簡易檢索 / 詳目顯示

研究生: 黃金泉
Huang, Chin-Chuan
論文名稱: 白光發光二極體封裝材料與結構之研究
Investigation of White Light-Emitting Diode Package Materials and Structure
指導教授: 蘇炎坤
Su, Yan-Kuin
共同指導教授: 林俊良
Lin, Chun-Liang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 71
中文關鍵詞: 發光二極體接面溫度熱阻玻璃螢光片量子點二氧化鋯光品質
外文關鍵詞: light-emitting diode, junction temperature, thermal resistance, glass phosphor, quantum dot, ZrO2, light quality
相關次數: 點閱:89下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的是分別透過摻雜二氧化鋯於封裝膠、採用玻璃螢光片與液態量子點來進行發光二極體封裝的光、熱及可靠度性能之研究。本論文提出封裝膠摻雜二氧化鋯奈米粒子、使用玻璃螢光片取代傳統螢光粉、以及利用液態量子點應用於白光發光二極體封裝。
    第一部分實驗中,摻雜二氧化鋯奈米粒子於封裝膠應用於白光發光二極體結構之研究,二氧化鋯奈米粒子摻雜於封裝膠分層的第一層,以改善白光發光二極體的光輸出和熱特性。實驗中採用波長396 nm的近紫外光發光二極體晶片、搭配用於第二層封裝膠的發藍色光與黃綠光的螢光粉,分別製作第一層摻雜有與沒有0.1wt%二氧化鋯奈米粒子的封裝膠白光發光二極體。第二層封裝膠的發光面結構分別有平面和圓頂。當第一層封裝膠摻二氧化鋯奈米粒子,第二層摻雜螢光粉封裝膠的表面為平面(LED II),在操作電流350毫安培下的白光發光二極體具有最佳的光輸出,光通量增加了3.79%、飽和電流增加了11.1%、元件接面至第二層封裝膠表面之間的熱阻下降了54.9%。在分層封裝膠的第一層中摻入二氧化鋯,增加白光發光二極體的光輸出和提升熱特性,由於封裝膠的折射率和熱導率的提升。第二部分實驗使用玻璃螢光片取代螢光粉應用於發光二極體封裝結構之研究中,分別使用玻璃螢光片的白光發光二極體和傳統螢光粉的白光發光二極體,在光輸出、溫度和可靠性方面進行比較。玻璃螢光片是由玻璃粉和釔鋁石榴石螢光粉以87:13(%)的比例燒結而成、色溫為5564K。傳統螢光粉白光發二極體使用的釔鋁石榴石螢光粉摻雜濃度為8.5wt%、色溫5649K。在1008小時和350毫安培的動態操作條件下,玻璃螢光片白光發光二極體和傳統螢光粉白光發光二極體的光輸出、色溫和演色性指數變化率都在1%以內。玻璃螢光片白光發光二極體的接面溫度為81.3℃、低於傳統螢光粉白光發光二極體的88.4℃。元件熱阻值則為35.6°C/W、低於傳統螢光粉白光發光二極體的37.4°C/W。同時玻璃螢光片白光發光二極體具有較佳的CIE1931色度座標(x,y)集中度以及熱性能。第三部分實驗利用液態量子點應用於白光發光二極體封裝結構之研究中,我們實現了一種具有高溫度穩定性與發光效率、以及高可靠度的量子點白色發光二極體的結構。利用膠體型態三元硫化鋅鎘白光量子點,搭配紫外光發光二極體晶片,製作成白光量子點發光二極體。可以得到接近於自然光色溫的高效率、高光品質和優良可靠度的白光量子點發光二極體。實驗結果證實,於1000小時和100毫安培的動態操作條件下,白光量子點發光二極體的相對發光效率和演色性指數的維持率可以達到96%和82%。並且具有較低的CIE1931色度座標(x,y)的漂移率。

    The main objective of this paper is to investigate the optical, thermal, and reliability performance of light-emitting diode (LED) packaging by doping zirconium dioxide (ZrO2) in encapsulant, using glass phosphor, and using liquid quantum dots, respectively. This paper proposes the use of ZrO2 nanoparticles (NPs) in encapsulant, the use of glass phosphor instead of conventional phosphors, and the use of liquid quantum dots (QDs) for white light-emitting diode (WLED) encapsulation.
    In the first part of the experiment, ZrO2 NPs were doped in the first layer of the encapsulant to improve the light output and thermal properties of the WLED. The first layer of WLED with and without 0.1 wt% of ZrO2 NPs was made by using a near-UV LED chip with a wavelength of 396 nm and a blue-emitting and yellow-green-emitting phosphor used in the second layer of the encapsulant. The structure of the luminescent surface of the second layer of the encapsulant has a flat surface and a dome. The WLED has the best light output at an operating current of 350mA when the first layer of encapsulant is doped with ZrO2 NPs and the second layer of encapsulant is doped with phosphor with a flat surface (LED II). The luminous flux is increased by 3.79%, the saturation current is increased by 11.1%, and the thermal resistance between the p-n junction and the surface of the second layer of encapsulant is reduced by 54.9%. The addition of ZrO2 NPs to the first layer of the layered encapsulant increases the light output and improves the thermal characteristics of the WLED due to the increase in refractive index and thermal conductivity of the encapsulant. In the second part of the experiment, glass phosphors were used to replace phosphors in the packaging of WLED, and the glass phosphor WLEDs were compared with those of conventional phosphors in terms of light output, thermal properties, and reliability. The phosphors were sintered with yttrium aluminium garnet (YAG) phosphor in the ratio of 87:13(%) at a color temperature of 5564 K. The doping concentration of YAG phosphor used in the conventional phosphor WLED was 8.5 wt% at a color temperature of 5649 K. The light output of the glass phosphor WLED and the conventional phosphor WLED were compared under dynamic operating conditions of 1008 hours and 350 mA. The light output, color temperature, and color rendering index (CRI) of the LEDs were all within 1% of each other under 1000 hours and 350 mA dynamic operation. The junction temperature of the glass phosphor WLED is 88.4°C, which is lower than the 81.3°C of the conventional phosphor WLED. The thermal resistance of the component is 37.4°C/W, which is lower than the 35.6°C/W of conventional phosphor WLEDs. In the third part of the experiment, we have realized a QD WLED structure with high temperature stability, luminescence efficiency, and high reliability by using liquid QDs for WLED packaging. The white QD LED is produced by using a ternary zinc cadmium sulfide (Zn0.8Cd0.2S) white QD in a colloidal form and a UVA LED chip. It is possible to obtain white light QD LEDs with high efficiency, high light quality and excellent reliability close to the natural white color temperature. The experimental results have confirmed that the relative luminous efficiency and color rendering index of white QD LEDs can be maintained at 96% and 82% under dynamic operating conditions of 1000 hours and 100 mA. It also has a lower shift rate of the CIE 1931 chromaticity (x, y).

    Content Abstract (in Chinese).........................................................................................................i Abstract (in English)..........................................................................................................iv Acknowledgements..........................................................................................................viii Content..................................................................................................................................ix Table Captions....................................................................................................................xi Figure Captions..................................................................................................................xii Chapter 1 Introduction.......................................................................................1 1.1 A brief history of nitride-based LEDs for solid state lighting....................1 1.2 Introduction of LEDs package...............................................................................1 1.3 Introduction of thermal resistance and junction temperature.................2 1.4 Improved light output by doping with ZrO2...................................................4 1.5 Use glass phosphors to replace conventional phosphors.........................5 1.6 Using liquid QD to reduce temperature and improve reliability.............6 1.7 Organization of this dissertation..........................................................................9 Chapter 2 Doping ZrO2 in a Layered Encapsulant to Improve the Light Output Flux and Thermal Characteristics of WLEDs .............................................14 2.1 Motivation.......................................................................................................................14 2.2 Experimental setup......................................................................................................14 2.3 Results and discussions.............................................................................................16 Chapter 3 Light Output, Thermal Characteristics, and Reliability of Using Glass Phosphors in WLED Packages...........................................................................25 3.1 Motivation......................................................................................................................25 3.2 Experimental setup.....................................................................................................25 3.3 Results and discussions.............................................................................................28 Chapter 4 High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots..............................................................................38 4.1 Motivation.....................................................................................................................38 4.2 Experimental setup....................................................................................................38 4.3 Results and discussions............................................................................................40 Chapter 5 Conclusions and Future Prospects.............................................53 5.1 Conclusions...................................................................................................................53 5.2 Future prospects..........................................................................................................57 References...............................................................................................................................59 Publication List......................................................................................................................68 Curriculum Vitae...................................................................................................................71 Table Captions Chapter 2 Table 2-1 Light output flux and relative increase rate of the four WLEDs.....20 Table 2-2 Thermal characteristic parameters of four WLED package structures .....................................................................................................................................................20 Table 2-3 Light output flux of different currents......................................................20 Chapter 3 Table 3-1 Light characteristics of PiS WLED doped with 8.5 and 9 wt% YAG phosphors and PiG WLED covered with phosphor glass......................................32 Table 3-2 Light output flux of PiS WLED and PiG WLED........................................32 Table 3-3 Normalized light output flux, CCT, and CRI of PiS WLED and PiG WLED, and measured data before and after 350mA lighting for 1008 h......................32 Table 3-4 Thermal characteristics of PiS WLED and PiG WLED...........................33 Chapter 4 Table 4-1 The efficiency and CRI of two types of devices at current of 100 mA...............................................................................................................................................45 Figure Captions Chapter 1 Fig. 1-1 Manufacturing process flow of the LED package.....................................12 Fig. 1-2 Schematic diagram of the heat transfer path of the LED package ...13 Chapter 2 Fig. 2-1 Schematic of a blue LED with ZrO2 NPs uniformly doped in a silicone encapsulant.............................................................................................................................21 Fig. 2-2 Comparison of four WLED packaging structures based on whether there are doped ZrO2 NPs on the surface of the first layer of silicone encapsulant and the second layer of silicone encapsulant.............................................................................21 Fig. 2-3 Light output power of the blue LED with three ZrO2 NPs doping concentrations........................................................................................................................22 Fig. 2-4 Appearance of the silicone encapsulant of the three ZrO2 NPs doping concentrations, from left to right: 0 wt% (undoped), 0.1 wt% and 0.5 wt%...22 Fig. 2-5 Luminous flux of the four WLED structures.................................................23 Fig. 2-6 Cross-sectional view of the dome structure (WLED III and WLED IV).23 Fig. 2-7 Surface temperature of the WLED chip junction and the second layer of silicone encapsulant of the four WLEDs packaging structures.............................24 Fig. 2-8 Current and luminous flux characteristic curves of the four WLEDs...24 Chapter 3 Fig. 3-1 Schematic and top view of (a) PiS WLED and (b) PiG WLED...................34 Fig. 3-2 PiS WLED doped with 8.5 and 9 wt% YAG phosphors and the PiG WLED CIE coordinate distribution of the covered PiG...................................................................34 Fig. 3-3 Schematic of PiS WLED and PiG WLED light path.......................................35 Fig. 3-4 Normalized light output flux drift of PiS WLED and PiG WLED at 350mA for 1008 h...........................................................................................................................................35 Fig. 3-5 CCT drift of PiS WLED and PiG WLED at 350mA for 1008 h.....................36 Fig. 3-6 CRI drift of PiS WLED and PiG WLED at 350mA for 1008 h......................36 Fig. 3-7 Tj and Rth of PiS WLED and PiG WLED.............................................................37 Fig. 3-8 Saturated vapor-pressure test of PiG: appearance of red ink in samples soaked every 24 h.....................................................................................................................37 Chapter 4 Fig. 4-1 Schematic diagram of (a) RWQD-WLED and (b) LWQD-WLED.............46 Fig. 4-2 Excitation and emission spectra of WQDs......................................................46 Fig. 4-3 (a) RWQD-WLED emission spectra of the different currents...................47 Fig. 4-3 (b) LWQD-WLED emission spectra under different currents...................47 Fig. 4-3 (c) Current-dependent integrated intensity of two types of devices...48 Fig. 4-4 (a) Surface temperature of RWQD-WLED and LWQD-WLED. (b) IR images of surface temperature image of RWQD-WLED and (c) LWQD-WLED at 100 mA driving current...........................................................................................................................48 Fig. 4-5 Photograph of (a) RWQD-WLED before UV excitation, (b) RWQD-WLED under UV-LED excitation, (c) LWQD-WLED before UV-LED excitation, (d) LWQD-WLED under UV-LED excitation..........................................................................................49 Fig. 4-6 (a) The relative emission spectrum of the RWQD-WLED under various operation time. The inset in Fig. 4-6. (a) is the QD part of the composition of the RWQD-WLED emission spectrum......................................................................................50 Fig. 4-6 (b) The relative emission spectrum of the LWQD-WLED with various operation time...........................................................................................................................50 Fig. 4-6 (c) The lifetime curve of relative efficiency of RWQD-WLED and LWQD-WLED from 0 h to 1000 h.......................................................................................................51 Fig. 4-6 (d) The lifetime curve of CRI of RWQD-WLED and LWQD-WLED from 0 h to 1000 h ...........................................................................................................................................52 Fig. 4-7 The chromaticity coordinate shift of WLED from 0 h to 1000 h. (a) RWQD-WLED and (b) LWQD-WLED..................................................................................................52 Chapter 5 Fig. 5-1 Schematic diagram of WLED with SiO2 aerogel doped phosphor silicone structures......................................................................................................................................58

    [1] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science, vol. 308, pp. 1274-1278, 2005.
    [2] N. Narendran, Y. Gu, J. P. Freyssinier-Nova and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Physica status solidi (a), vol. 202, pp. 60-62, 2005.
    [3] T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics Journal, vol. 7, pp. 1-11, 2015.
    [4] B. J. Shih, S. C. Chiou, Y. H. Hsieh, C.C. Sun, T. H. Yang, S. Y. Chen and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Optics Express, vol. 23, pp. 33861-33869, 2015.
    [5] G. S. R. Raju, J. Y. Park, H. C. Jung, E. Pavitra, B. K. Moon, J. H. Jeonga and J. H. Kimb, “Excitation induced efficient luminescent properties of nanocrystalline Tb3+/Sm3+: Ca2Gd8Si6O26 phosphors,” J. Mater. Chem. vol.21, pp: 6136-6139, 2011.
    [6] M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, F. Jermann, “Ceramic Phosphors for Light Conversion in LED,” ECS Journal of Solid State Science and Technology, vol. 2, pp. 3168-3176, 2013.
    [7] S. Sailaja, S. J. Dhoble, N. Brahme and B. S. Reddy, “Synthesis, photoluminescence and mechano-luminescence properties of Eu3+ ions activated Ca2Gd2W3O14 phosphors,” Journal of Materials Science, vol.46, pp. 7793-7798, 2011.
    [8] P. Schlotter, R. Schmidt and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Applied Physics A, vol. 64, pp. 417-418, 1997.
    [9] A. Piquette, W. Bergbauer, B. Galler and K. C. Mishra, “On choosing phosphors for near-UV and blue LEDs for white light,” ECS J Solid State Sci, vol. 5, pp. 3146-3159, 2015.
    [10] S. Liu and X. Luo, "LED packaging for lighting applications: design, manufacturing, and testing," John Wiley & Sons, 2011.
    [11]洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌,"LED 工程師基礎概念與應用",五南文化事業, 2012。
    [12] EIA JEDEC Standard No. 51-1 Integrated Circuits Thermal Measurement Method - Electrical Test Method (Single Semiconductor Device), EIA, VA,USA, 1995.
    [13] N. Lakshminarasimhan and U. V. Varadaraju, “White-Light Generation in Sr2SiO4:Eu2+, Ce3+ under Near-UV Excitation,” Journal of The Electrochemical Society, vol. 152, pp. 152-156, 2005.
    [14] J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L, Parka, G. C. Kim and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white-emitting phosphor,” Appl. Phys. Lett., vol. 85, 2004.
    [15] Q. H. Zhang, J. Wang, M. Zhang and Q. Su, “Tunable bluish green to yellowish green Ca2(1−x)Sr2xAl2SiO7: Eu2+ phosphors for potential LED application,” Applied Physics B, vol. 92, pp.195-198, 2008.
    [16] Y. Zhang, J. Xu, Q. Cui and B. Yang, “Eu3+-doped Bi4Si3O12 red phosphor for solid state lighting: microwave synthesis, characterization, photoluminescence properties and thermal quenching mechanisms,” Scientific Reports, vol. 7, pp. 42464, 2017.
    [17] J. Y. Zhong, W. D. Zhuang, X. R. Xing, R. H. Liu, Y. F. Li, Y. L. Zheng, Y. S. Hua and H. B. Xu, “Synthesis, structure and luminescence properties of new blue-green-emitting garnet-type Ca3Zr2SiGa2O12:Ce3+ phosphor for near-UV pumped white-LEDs,” RSC Adv., vol. 6, pp. 2155-2161, 2016.
    [18] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Phys., vol. 44, 2005.
    [19] K. J. Chen, H. V. Han, H. C. Chen, C. C. Lin, S. H. Chien, C. C. Huang, T. M. Chen, M. H. Shih and H. C. Kuo, “White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles,” Nanoscale, vol. 6, pp.5378-5383, 2014.
    [20] P. T. Chung, C. T. Yang, S. H. Wang, C. W. Chen, A. S. T. Chiang and C. Y. Liu, “ZrO2/epoxy nanocomposite for LED encapsulation,” Materials Chemistry and Physics, vol. 136, pp. 868-876, 2012.
    [21] P. Tao, Y. Li, R. W. Siegel and L. S. Schadler, “Transparent Dispensible High-Refractive Index ZrO2/Epoxy Nanocomposites for LED Encapsulation,” J. Appl. Polym. Sci., vol. 130, pp.3785-3793, 2013.
    [22] P. T. Chung, S. H. Chiou, C. Y. Tseng and A. S. T. Chiang, “The preparation and evaluation of a zirconia/oligosiloxane nanocomposite for LED encapsulation,” ACS Appl. Mater. Interfaces, vol. 8, pp.9986-9993, 2016.
    [23] Y. F. Huang, Y. Feng, X. J. Sun, Y. Han, D. S. Liu and T. H. Tan, ” Preparation of ZrO2/silicone hybrid materials for LED encapsulation via in situ sol‐gel reaction,” Polym Adv Technol., vol. 30, pp. 1818-1824, 2019.
    [24] N. Narendran, Y. Gu, J. P. Freyssinier-Nova and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Physica Status Solidi, vol. 202, pp. 60-62, 2005.
    [25] T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics Journal, vol.7, pp. 1-11, 2015.
    [26] B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Optics Express, vol. 23, pp. 33861-33869, 2015.
    [27] W. Lai, X. Liu, W. Chen, X. Lei and X. Cao, “Thermal Properties Analysis of Die Attach Layer Based on Time-Constant Spectrum for High-Power LED,” IEEE Transactions on Electron Devices, vol. 62, pp. 3715-3721, 2015.
    [28] Y. Ma, R. Hu, X. Yu, W. Shu and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” International Journal of Heat and Mass Transfer, vol. 106, pp. 1-6, 2017.
    [29] C. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu and Z. Ji, “Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review,” Journal of the European Ceramic Society, vol. 35, pp. 859-869, 2015.
    [30] Y. Deng, Q. Lu, K. Yao and N. Zhou, “Study on phosphor powder precipitation model in flexible material manufacturing process based on neuro-fuzzy network,” Optik, vol. 168, pp. 563-576, 2018.
    [31] A. Lakshmanan, R. S. Kumar, V. Sivakumar, P. C. Thomas and M. T. Jose, “Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes,” Indian Journal of Pure & Applied Physics, vol. 49, pp. 303-307, 2011.
    [32] Y. C. Lin, M. Bettinelli, S. K. Sharma, B. Redlich, A Speghini and M. Karlsson, “Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes,” Journal of Materials Chemistry C, vol. 8, pp.14015-14027, 2020.
    [33] Y. H. Kim, P. Arunkumar, B. Y. Kim, S. Unithrattil, E. Kim, S. H. Moon, J. Y. Hyun, K. H. Kim, D. H. Lee, J. S. Lee and W. B. Im, “A zero-thermal-quenching phosphor,” Nature Materials, vol. 16, pp. 543-550, 2017.
    [34] C. C. Lin and R. S. Liu, “Advances in Phosphors for Light-emitting Diodes,” The Journal of Physical Chemistry Letters, vol. 2, pp. 1268-1277, 2011.
    [35] V. S. Tucureanu, M. Alina and A. M. Avram, “Synthesis and characterization of YAG:Ce phosphors for white LEDs,” Optic−Electronics Review, vol. 2, pp. 239-251, 2015.
    [36] A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Materials, vol. 4, pp. 126105, 2016.
    [37] Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim and D. H. Yoon, “High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting,” Scientific Reports, vol. 6, pp. 31206, 2016.
    [38] M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs, ”ECS Journal of Solid State Science and Technology, vol. 2, pp. 3168-3176, 2013.
    [39] J. J. Wierer Jr. and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Phys. Status Solidi A, vol. 2, pp. 1-6, 2014.
    [40] X. Zhang, J. Yu, J. Wang, C. B. Zhu, J. H. Zhang, R. Zou, B. F. Lei, Y. L. Liu and M. M. Wu, “Facile Preparation and Ultrastable Performance of Single-Device White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs,” ACS Applied Materials & Interfaces, vol. 7, pp. 28122-28127, 2015.
    [41] R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser & Photonics Reviews, vol. 8, pp. 158-164, 2014.
    [42] H. C. Yoon, K. Yoshihiro, H. Yoo, S. W. Lee, J. H. Oh and Y. R. Do, “Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix,” Scientific Reports, vol. 8, pp. 1, 2018.
    [43] K. J. Chen, H. C. Chen, K. A. Tsai, C. C. Lin, H. H. Tsai, S. H. Chien, B. S. Cheng, Y. J. Hsu, M. H. Shih and C. H. Tsai, “Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method,” Adv. Funct. Mater, vol. 22, pp. 5138-5143, 2012.
    [44] P. Gu, Y. Zhang, Y. Feng, T. Zhang, H. Chu, T. Cui, Y. Wang, J. Zhao and W. W. Yu, “Real-time and on-chip surface temperature sensing of GaN LED chips using PbSe quantum dots,” Nanoscale, vol. 5, pp. 10481-10486, 2013.
    [45] H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee and D. Y. Jeon, “White light‐emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+, Li+ Phosphors,” Adv. Mater, vol. 20, pp.2696-2702, 2008.
    [46] J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi and K. F. Jensen, “Full color emission from II–VI semiconductor quantum dot–polymer composites,” Adv. Mater, vol. 12, pp. 1102-1105, 2000.
    [47] A. R. Clapp, I. L. Medintz, H. T. Uyeda, B. R. Fisher, E. R. Goldman, M. G. Bawendi and H. Mattoussi, “Quantum dot-based multiplexed fluorescence resonance energy transfer,” J. Ame. Chem. Soc, vol. 127, pp. 18212-18221, 2005.
    [48] P. Reiss, J. Bleuse and A. Pron, “Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion,” Nano Lett, vol. 2, pp. 781-784, 2002.
    [49] Y. Shirasaki, G. Y. Supran, M. G. Bawendi and V. Bulovic, “Emergence of colloidal quantum-dot light-emitting technologies,” Nat. Photon, vol. 7, pp. 13-23, 2013.
    [50] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim, “White‐light‐emitting diodes with quantum dot color converters for display backlights,” Adv. Mater, vol. 22, pp. 3076-3080, 2010.
    [51] S. Nizamoglu, T. Ozel, E. Sari and H. V. Demir, “White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes,” Nanotechnol, vol. 18, pp. 065709, 2007.
    [52] S. Nizamoglu, G. Zengin and H. V. Demir, “Color-converting combinations of nanocrystal emitters for warm-white light generation with high color rendering index,” Appl. Phys. Lett, vol. 92, pp. 031102, 2008.
    [53] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Opt. Mater, vol. 32, pp. 515-521, 2010.
    [54] H. Y. Lin, S. W. Wang, C. C. Lin, K. J. Chen, H. V. Han, Z. Y. Tu, H. H. Tu, T. M. Chen, M. H. Shih and P. T. Lee, “Excellent color quality of white-light-emitting diodes by embedding quantum dots in polymers material,” IEEE J. Sel. Top. Quan. Elect., vol. 22, pp. 35-41, 2016.
    [55] S. Nizamoglu, T. Erdem, X. W. Sun and H. V. Demir, “Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering,” Opt. Lett., vol. 35, pp. 3372-3374, 2010.
    [56] S. Nizamoglu, E. Mutlugun, T. Özel, H. V. Demir, S. Sapra, N. Gaponik and A. Eychmüller, “Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaN/GaN light emitting diodes for high-quality white light generation,” Appl. Phys. Lett., vol. 92, pp. 113110, 2008.
    [57] X. Wang, W. Li and K. Sun, “Stable efficient CdSe/CdS/ZnS core/multi-shell nanophosphors fabricated through a phosphine-free route for white light-emitting-diodes with high color rendering properties,” J. Mater. Chem., vol. 21, pp. 8558-8565, 2011.
    [58] C. B. Siao, K. W. Wang, H. S. Chen, Y. S. Su and S. R. Chung, “Ultra high luminous efficacy of white ZnxCd1−xS quantum dots-based white light emitting diodes,” Opt. Mater. Express, vol. 6, pp. 749-758, 2016.
    [59] S. C. Hsu, Y. H. Chen, Z. Y. Tu, H. V. Han, S. L. Lin, T. M. Chen, H. C. Kuo and C. C. Lin, “Highly stable and efficient hybrid quantum dot light-emitting diodes,” IEEE Photonics J., vol. 7, pp. 1-10, 2015.
    [60] Y. C. Chen, C. B. Siao, H. S. Chen, K. W. Wang and S. R. Chung, “The application of Zn0.8Cd0.2S nanocrystals in white light emitting diodes devices,” RSC Adv., vol. 5, pp. 87667-87671, 2015.
    [61] M. J. Bowers, J. R. McBride and S. J. Rosenthal, “White-light emission from magic-sized cadmium selenide nanocrystals,” J. Am. Chem. Soc., vol. 127, pp. 15378-15379, 2005.
    [62] M. A. Schreuder, J. D. Gosnell, N. J. Smith, M. R. Warnement, S. M. Weiss and S. J. Rosenthal, Encapsulated white-light CdSe nanocrystals as nanophosphors for solid-state lighting, “J. Mater. Chem., vol. 18, pp. 970-975, 2008.
    [63] A. Kshirsagar, S. Pickering, J. Xu and J. Ruzyllo, “Light emitting diodes formed using mist deposition of colloidal solution of CdSe nanocrystalline quantum dots,” ECS Trans., vol. 35, pp. 71-77, 2011.
    [64] H. T. Huang, C. C. Tsai and Y. P Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express, vol. 18, pp. 201-206, 2010.
    [65] Y. C. Chen, H. S. Chen, S. R. Chung, J. K. Chang and K. W. Wang, “The effect of surface structures and compositions on the quantum yields of highly effective Zn0.8Cd0.2S nanocrystals,” J. Mater. Chem. C, vol. 3, pp. 5881-5884, 2015.
    [66] H. S. Chen, S. R. Chung, Y. C. Chen, T. Y. Chen, C. Y. Liu and K. W. Wang, “The structure-dependent quantum yield of ZnCdS nanocrystals,” Cryst. Eng. Comm., vol. 17, pp. 5032-5037, 2015.
    [67] C. W. Sher, C. H. Lin, H. Y. Lin, C. C. Lin, C. H. Huang, K. J. Chen, J. R. Li, K. Y. Wang, H. H. Tu and C. C. Fu, “A high quality liquid-type quantum dot white light-emitting diode,” Nanoscale, vol. 8, pp. 1117-1122, 2016.
    [68] H. S. Chen, S. R. Chung, T. Y. Chen and K. W. Wang, “Graphene-supported Pt and PtPd nanorods with enhanced electrocatalytic performance for the oxygen reduction reaction,” J. Mater. Chem. C, vol. 2, pp. 2664-2667, 2014.
    [69] N. Suzuki and Y. Tomita, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Optics Express, vol. 14, 2006.
    [70] M. Jerman, Z. Qiao and D. Mergel, “Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density,” Applied Optics, vol. 44, 2005.
    [71] S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem., vol. 18, pp. 1751-1755, 2008.
    [72] A. Lakshmanan, R. S. Kumar, V. Sivakumar, P. C. Thomas and M. T. Jose, “Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes,” Indian Journal of Pure & Applied Physics, vol. 49, pp. 303-307, 2011.
    [73] Y. C. Lin, M. Bettinelli, S. K. Sharma, B. Redlich, A. Speghini and M. Karlsson, “Unraveling the impact of different thermal quenching routes on the luminescence efficiency of the Y3Al5O12:Ce3+ phosphor for white light emitting diodes,” Journal of Materials Chemistry C, vol. 8, pp. 14015-14027, 2020.
    [74] Y. H. Kim, P. Arunkumar, B. Y. Kim, S. Unithrattil, E. Kim, S. H. Moon, J. Y. Hyun, K. H. Kim, D. H. Lee, J. S. Lee and W. B. Im, “A zero-thermal-quenching phosphor,” Nature Materials, vol.16, pp. 543-550, 2017.
    [75] C. C. Lin and R. S. Liu, “Advances in Phosphors for Light-emitting Diodes,” The Journal of Physical Chemistry Letters, vol. 2, pp. 1268-1277, 2011.
    [76] V. S. Tucureanu, M. Alina and A. M. Avram, “Synthesis and characterization of YAG:Ce phosphors for white LEDs,” Optic−Electronics Review, vol. 23, pp. 239-251, 2015.
    [77] A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera and J. E. Garay, “Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Materials, vol. 4, pp. 126105, 2016.
    [78] Y. H. Song, E. K. Ji, B. W. Jeong, M. K. Jung, E. Y. Kim and D. H. Yoon, “High power laser-driven ceramic phosphor plate for out-standing efficient white light conversion in application of automotive lighting,” Scientific Reports, vol. 6, pp. 31206, 2016.
    [79] M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov and F. Jermann, “Ceramic Phosphors for Light Conversion in LEDs,” ECS Journal of Solid State Science and Technology, vol. 2, pp. 3168-3176, 2013.
    [80] J. J. Wierer Jr. and J. Y. Tsao, “Advantages of III-nitride laser diodes in solid-state lighting,” Physica Status Solidi, A Appl. Mater. Sci, vol. 22, pp. 1-6, 2014.
    [81] X. Zhang, J. Yu, J. Wang, C. B. Zhu, J. H. Zhang, R. Zou, B. F. Lei, Y. L. Liu and M. M Wu, “Facile Preparation and Ultrastable Performance of Single-Device White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs,” ACS Applied Materials & Interfaces, vol. 7, pp. 28122-28127, 2015.
    [82] R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu and Y. Wang, “A new-generation color converter for high-power white LED: trans-parent Ce3+:YAG phosphor-in-glass,” Laser & Photonics Reviews, vol. 8, pp. 158-164, 2014.
    [83] H. C. Yoon, K. Yoshihiro, H. Yoo, S. W. Lee, J. H. Oh and Y. R. Do, “Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix,” Scientific Reports, vol. 8, pp. 1, 2018.
    [84] Y. P. Chang, J. K. Chang, W. C. Cheng, Y. Y. Kuo, C. N. Liu, L. Y. Chen, and W. H. Cheng, “New scheme of a highly-reliable glass-based color wheel for next-generation laser light engine,” Optical Materials Express, vol. 7, pp. 1029-1034, 2017.
    [85] S. Kim, B. Kim and H. Kim, “Optical properties of densified phosphor-in-glass LED encapsulants by spark plasma sintering,” Optical Materials Express, vol. 7, pp. 4304-4315, 2017.
    [86] A. T. Wieg, E. H. Penilla, C. L. Hardin, Y. Kodera, J. E. Garay, “ Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting,” APL Materials, vol. 4, pp. 126105, 2016.
    [87] X. Xu, H. Li, Y. Zhuo, D. Xiong and M. X. Chen, “Gradient refractive index structure of phosphor-in-glass coating for packaging of white LEDs,” Journal of the American Ceramic Society, vol. 102, pp. 1677-1685, 2019.
    [88] Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163-2165, 2004.
    [89] L. Kim, J. H. Choi, S. H. Jang and M. W. Shin, “Thermal analysis of LED array system with heat pipe,” Thermochimica Acta, vol. 455, pp. 21-25, 2007.
    [90] D. J. Lee, H. J. Choi, S. H. Jeong, C. H. Jeon, D. H. Lee, J. Lim, C. Byon,J. W. Choi, "A study on the measurement and prediction of LED junction temperature," Journal of Heat and Mass Transfer, vol. 127, pp. 1243–1252,2018.
    [91] H. S. Chen, K. W. Wang, S. S. Chen, S. R. Chung, “ZnxCd1−xS quantum dots-based white light-emitting diodes,” Opt. Lett., vol. 38, pp. 2080-2082, 2013.
    [92] K. J. Chen, H. C. Chen, M. H. Shih, C. H. Wang, M. Y. Kuo, Y. C. Yang, C. C. Lin and H. C. Kuo, “The influence of the thermal effect on CdSe/ZnS quantum dots in light-emitting diodes,” J. Lightwave Technol., vol. 30, pp. 2256-2261, 2012.
    [93] T. Erdem, S. Nizamoglu and H. V. Demir, “Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes,” Opt. Express, vol. 20, pp. 3275-3295, 2012.
    [94] F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. S. Lavine, “Fundamentals of heat and mass transfer,” John Wiley & Sons, 2005.
    [95] K. Kim, J. Y. Woo, S. Jeong and C. S. Han, “Photoenhancement of a quantum dot nanocomposite via UV annealing and its application to white LEDs,” Adv. Mater., vol. 23, pp. 911-914, 2011.
    [96] J. Kimura, T. Uematsu, S. Maenosono and Y. Yamaguchi, “Photoinduced fluorescence enhancement in CdSe/ZnS quantum dot submonolayers sandwiched between insulating layers:  Influence of dot proximity,” J. Phys. Chem. B, vol. 108, pp. 13258-13264, 2004.
    [97] T. Zhang, H. Zhao, D. Riabinina, M. Chaker and D. Ma, “Concentration-dependent photo induced photoluminescence enhancement in colloidal PbS quantum dot solution,” J. Phys. Chem. C, vol. 114, 2010.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE