簡易檢索 / 詳目顯示

研究生: 邱鉉文
Chiu, Hsuan-Wen
論文名稱: 將粒線體標靶B2蛋白應用在肺癌於體內和體外試驗
A mitochondrial targeting protein B2 applied on lung cancer in vivo and in vitro
指導教授: 洪健睿
Hpng, Jiann-Ruey
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 80
中文關鍵詞: 細胞凋亡細胞自噬程序性壞死肺癌
外文關鍵詞: Apoptosis, Autophagy, Necroptosis , Lung Cancer
相關次數: 點閱:64下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • β-田野病毒B2蛋白可以靶向線粒體並發揮死亡因子的作用,但其對人肺癌的作用尚不清楚。根據我們的數據,β-田野病毒B2蛋白可以通過 p53 調控的依賴或獨立途徑誘導人肺癌細胞死亡,這與誘導活性氧信號和 p53 調控相關。此外,β-田野病毒B2 蛋白增加 p53 和 p21 的表達在p53 有表達細胞 (A549) 中,但並沒有在 p53 無表達細胞 (H1299) 中的有調控。 β-田野病毒B2 蛋白調控 A549 細胞系中的 Bax 表達,而在 H1299 細胞系中的 則是RIP3 表達增加。此外,我們發現 B2 可以殺死 NOD/SCID 小鼠中 A549 細胞誘導的固態腫瘤。然而,突變體 ΔB2 不能。在 NOD/SCID 小鼠中,在 NOD/SCID 小鼠中,B2 誘導 p53/Bax 介導的細胞凋亡和 RIPK3 介導的壞死性凋亡。然後,B2 誘導的壓力訊息可以通過調控 ATG5、BECN1 和 Bcl-2 來抑制自噬。最後,免疫化學分析表明,ROS/p38/Nrf2 壓力訊息可明顯降低與癌細胞遷移和侵襲相關的腫瘤標誌物如 CD133、Thy1 和 Napsin 的表達。因此,B2 觸發的 ROS/Nrf2 的壓力訊號可以協調多個信號之間的相互作用進而殺死腫瘤以及抑制 A549 肺癌細胞自噬的途徑。 β-田野病毒B2 蛋白作為壞死誘導劑,可通過 調控 p53 和 RIP3 表達引發肺癌死亡。我們提出了肺癌治療的新觀點。

    The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells. but its molecular mechanism remains unknown. According to our data, B2 induces human lung cancer cell death through p53-mediated dependent and independent pathways, which correlate with stimulated reactive oxygen species signaling and p53 up-regulation. Additionally, B2 protein of betanodavirus upregulates p53 and p21 expression in p53-expressing cells (A549), but not in p53 non-expressing cells (H1299). Betanodavirus B2 protein upregulated both Bax expression in A549 cell lines and upregulated RIP3 expression in H1299 cell lines. Furthermore, we found that B2 could kill an A549 cell-induced solid tumor in NOD/SCID mice; however, mutant ΔB2 could not. In NOD/SCID mice, B2 induces both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. B2 then induces stress signals that can suppress autophagy by downregulating ATG5, BECN1, and Bcl-2. Finally, immunochemistry analysis showed that ROS/p38/Nrf2 stress could strongly reduce the expression of tumor markers such as CD133, Thy1, and Napsin, which correlate to migration and invasion in cancer cells. Thus, B2-triggered-ROS/Nrf2-mediated stress signals can orchestrate crosstalk between multiple signals via pathways that kill tumors and suppress autophagy in A549 lung cancer cells in vivo. The betanodavirus B2 protein, as a necrotic inducer, can trigger lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy.

    Chinese Abstract (中文摘要) I Abstract II Acknowledgements VII Published Papers and Patents of Tables VIII Table of Contents X List of Tables XIV List of Figures XV Abbreviation List XVII Chapter 1. Research Background 1 1-1 Betanodavirus 1 1-2 Cell death pathway 2 1-3 Reactive oxygen species (ROS) 3 1-4 P53 plays cell-death regulatory 5 Chapter 2. Material and Methods 6 2-1 Cell lines and culture 6 2-2 Plasmid Constructions 6 2-3 Cancer cell transfection 6 2-4 Preparation of mitochondria from transfected cancer cells 7 2-5 Detection of relative ROS levels in vitro 8 2-6 Effect of inhibitors of p53 and necroptosis 9 2-7 Guantitative realtime PCR (RT-qPCR) 9 2-8 Assays for apoptosis and necrosis 10 2-9 A549 human lung cancer cells xenograft model in NOD/SCID mice 11 2-10 Prediction of 3D structures 11 2-11 Immunohistochemistry staining for tumor markers 12 2-12 Protein extraction and western blot analysis 13 2-13 Statistical analysis 14 Chapter 3. The betanodavirus B2 protein inhibits autophagy in lung cancer cells by triggering apoptosis and necroptosis 15 3-1 Introduction 15 3-2 Results 15 3-3 Discussions 21 Chapter 4. In lung cancer, ROS/Nrf2-mediated stress signaling triggers apoptosis and necroptosis through Mitochondrion-Targeting Protein (B2) 25 4-1 Introduction 25 4-2 Results 25 4-3 Discussions 32 Future prospects 38 References 40 List of Tables 48 List of Figures 51

    References
    Aggarwal, V., Tuli, H.S., Varol, A., Thakral, F., Yerer, M.B., Sak, K., Varol, M., Jain, A., Khan, M.A., and Sethi, G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 9, 2019.

    Agyei, D., Ahmed, I., Akram, Z., Iqbal, H.M., and Danquah, M.K. Protein and Peptide Biopharmaceuticals: An Overview. Protein Pept Lett 24, 94-101, 2017.

    B L Munday, J.K.N.M. Betanodavirus infections of teleost fish: A review. Journal of Fish Diseases 25, 14, 2002.

    Bai, R., Chen, N., Li, L., Du, N., Bai, L., Lv, Z., Tian, H., and Cui, J. Mechanisms of Cancer Resistance to Immunotherapy. Front Oncol 10, 1290, 2020.

    Ball, L.A., and Johnson, K.L. Reverse genetics of nodaviruses. Adv Virus Res 53, 229-244, 1999.

    Bartek, J., and Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421-429, 2003.

    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., and Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252-258, 2014.

    Bienert, S., Waterhouse, A., de Beer, T.A., Tauriello, G., Studer, G., Bordoli, L., and Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res 45, D313-D319, 2017.

    Bond, J., Haughton, M., Blaydes, J., Gire, V., Wynford-Thomas, D., and Wyllie, F. Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13, 2097-2104, 1996.

    Bovo, G., Nishizawa, T., Maltese, C., Borghesan, F., Mutinelli, F., Montesi, F., and De Mas, S. Viral encephalopathy and retinopathy of farmed marine fish species in Italy. Virus Res 63, 143-146, 1999.

    Cai, J., Niu, X., Chen, Y., Hu, Q., Shi, G., Wu, H., Wang, J., and Yi, J. Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia 10, 41-51, 2008.

    Chao, J.A., Lee, J.H., Chapados, B.R., Debler, E.W., Schneemann, A., and Williamson, J.R. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12, 952-957, 2005.

    Chen, L.J., Su, Y.C., and Hong, J.R. Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385, 444-454, 2009.

    Chiangjong, W., Chutipongtanate, S., and Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 57, 678-696, 2020.

    Chio, I.I.C., and Tuveson, D.A. ROS in Cancer: The Burning Question. Trends Mol Med 23, 411-429, 2017.

    Chiu, H.-W., Su, Y.-C., and Hong, J. Betanodavirus B2 protein triggers apoptosis and necroptosis in lung cancer cells that suppresses autophagy. Oncotarget 8, 2017a.

    Conklin, K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3, 294-300, 2004.

    de Sa Junior, P.L., Camara, D.A.D., Porcacchia, A.S., Fonseca, P.M.M., Jorge, S.D., Araldi, R.P., and Ferreira, A.K. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid Med Cell Longev 2017, 2467940, 2017.

    Delsert, C., Morin, N., and Comps, M. A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Arch Virol 142, 2359-2371, 1997.

    Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516, 2007.
    Ferraro, E., and Cecconi, F. Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys 462, 210-219, 2007.

    Ghavami, S., Asoodeh, A., Klonisch, T., Halayko, A.J., Kadkhoda, K., Kroczak, T.J., Gibson, S.B., Booy, E.P., Naderi-Manesh, H., and Los, M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 12, 1005-1022, 2008.

    Gilbertson, R.J., and Rich, J.N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7, 733-736, 2007.

    He, L., He, T., Farrar, S., Ji, L., Liu, T., and Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem 44, 532-553, 2017.

    Hvisdas, C., Louisias, M., Laidlaw, T.M., and Akenroye, A. Addressing disparities in biologic drug development in the United States. J Allergy Clin Immunol 148, 1154-1156, 2021.

    Iwamoto, T., Mise, K., Takeda, A., Okinaka, Y., Mori, K.I., Arimoto, M., Okuno, T., and Nakai, T. Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86, 2807-2816, 2005.

    Jia, L., Macey, M.G., Yin, Y., Newland, A.C., and Kelsey, S.M. Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis. Blood 93, 2353-2359, 1999.

    Koren, E., and Fuchs, Y. Modes of Regulated Cell Death in Cancer. Cancer Discov 11, 245-265, 2021.

    Kubbutat, M.H., Jones, S.N., and Vousden, K.H. Regulation of p53 stability by Mdm2. Nature 387, 299-303, 1997.

    Kung, G., Konstantinidis, K., and Kitsis, R.N. Programmed necrosis, not apoptosis, in the heart. Circ Res 108, 1017-1036, 2011.

    Lane, D.P. Cancer. p53, guardian of the genome. Nature 358, 15-16, 1992.

    Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323-331, 1997.

    Levine, A.J., Hu, W., and Feng, Z. The P53 pathway: what questions remain to be explored? Cell Death Differ 13, 1027-1036, 2006.

    Li, C.M., Haratipour, P., Lingeman, R.G., Perry, J.J.P., Gu, L., Hickey, R.J., and Malkas, L.H. Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 10, 2021.

    Lim, S.D., Sun, C., Lambeth, J.D., Marshall, F., Amin, M., Chung, L., Petros, J.A., and Arnold, R.S. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62, 200-207, 2005.

    Locksley, R.M., Killeen, N., and Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501, 2001.

    Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529, 227-240, 2013.

    Lu, R., Maduro, M., Li, F., Li, H.W., Broitman-Maduro, G., Li, W.X., and Ding, S.W. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040-1043, 2005.

    Luo, Y.H., Chiu, C.H., Scott Kuo, C.H., Chou, T.Y., Yeh, Y.C., Hsu, H.S., Yen, S.H., Wu, Y.H., Yang, J.C., Liao, B.C., Hsia, T.C., and Chen, Y.M. Lung Cancer in Republic of China. J Thorac Oncol 16, 519-527, 2021.

    Marino, G., Niso-Santano, M., Baehrecke, E.H., and Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15, 81-94, 2014.

    Mohammad, N., Singh, S.V., Malvi, P., Chaube, B., Athavale, D., Vanuopadath, M., Nair, S.S., Nair, B., and Bhat, M.K. Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-beta-cyclodextrin: Involvement of p53 and Fas receptor ligand complex. Sci Rep 5, 11853, 2015.

    Montero, J., Dutta, C., van Bodegom, D., Weinstock, D., and Letai, A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 20, 1465-1474, 2013.

    Morgan, M.J., and Liu, Z.G. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21, 103-115, 2011.

    Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371, 1992.

    Neupert, W. Protein import into mitochondria. Annu Rev Biochem 66, 863-917, 1997.

    Nikoletopoulou, V., Markaki, M., Palikaras, K., and Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833, 3448-3459, 2013.

    Nourazarian, A.R., Kangari, P., and Salmaninejad, A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev 15, 4745-4751, 2014.

    Nowsheen, S., and Yang, E.S. The intersection between DNA damage response and cell death pathways. Exp Oncol 34, 243-254, 2012.

    Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-862, 2000.

    Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., and Migliaccio, A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52, 192-203, 2020.

    Plaks, V., Kong, N., and Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16, 225-238, 2015.

    Prager, B.C., Xie, Q., Bao, S., and Rich, J.N. Cancer Stem Cells: The Architects of the Tumor Ecosystem. Cell Stem Cell 24, 41-53, 2019.

    Prives, C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5-8, 1998.

    Prives, C., and Hall, P.A. The p53 pathway. J Pathol 187, 112-126, 1999.

    Puar, Y.R., Shanmugam, M.K., Fan, L., Arfuso, F., Sethi, G., and Tergaonkar, V. Evidence for the Involvement of the Master Transcription Factor NF-kappaB in Cancer Initiation and Progression. Biomedicines 6, 2018.

    Qi, N., Cai, D., Qiu, Y., Xie, J., Wang, Z., Si, J., Zhang, J., Zhou, X., and Hu, Y. RNA binding by a novel helical fold of b2 protein from wuhan nodavirus mediates the suppression of RNA interference and promotes b2 dimerization. J Virol 85, 9543-9554, 2011.

    Ravegnini, G., Sammarini, G., Nannini, M., Pantaleo, M.A., Biasco, G., Hrelia, P., and Angelini, S. Gastrointestinal stromal tumors (GIST): Facing cell death between autophagy and apoptosis. Autophagy 13, 452-463, 2017.

    Reshi, L., Wu, H.C., Wu, J.L., Wang, H.V., and Hong, J.R. GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells. Apoptosis 21, 443-458, 2016.

    Reshi, M.L., Su, Y.C., and Hong, J.R. RNA Viruses: ROS-Mediated Cell Death. Int J Cell Biol 2014, 467452, 2014.

    Schatz, G., and Dobberstein, B. Common principles of protein translocation across membranes. Science 271, 1519-1526, 1996.

    Sethu, S., Govindappa, K., Alhaidari, M., Pirmohamed, M., Park, K., and Sathish, J. Immunogenicity to biologics: mechanisms, prediction and reduction. Arch Immunol Ther Exp (Warsz) 60, 331-344, 2012.

    Shay, J.W., Wright, W.E., and Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072, 1-7, 1991.

    Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334, 1997.

    Stracker, T.H., Couto, S.S., Cordon-Cardo, C., Matos, T., and Petrini, J.H. Chk2 suppresses the oncogenic potential of DNA replication-associated DNA damage. Mol Cell 31, 21-32, 2008.
    Su, Y.C., Chiu, H.W., Hung, J.C., and Hong, J.R. Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting. Apoptosis 19, 1457-1470, 2014.

    Su, Y.C., and Hong, J.R. Betanodavirus B2 causes ATP depletion-induced cell death via mitochondrial targeting and complex II inhibition in vitro and in vivo. J Biol Chem 285, 39801-39810, 2010.

    Su, Y.C., Wu, J.L., and Hong, J.R. Betanodavirus non-structural protein B2: A novel necrotic death factor that induces mitochondria-mediated cell death in fish cells. Virology 385, 143-154, 2009.

    Teng, X., Degterev, A., Jagtap, P., Xing, X., Choi, S., Denu, R., Yuan, J., and Cuny, G.D. Structure-activity relationship study of novel necroptosis inhibitors. Bioorg Med Chem Lett 15, 5039-5044, 2005.

    Thai, A.A., Solomon, B.J., Sequist, L.V., Gainor, J.F., and Heist, R.S. Lung cancer. Lancet 398, 535-554, 2021.

    Thandra, K.C., Barsouk, A., Saginala, K., Aluru, J.S., and Barsouk, A. Epidemiology of lung cancer. Contemp Oncol (Pozn) 25, 45-52, 2021.

    Vogelstein, B., and Kinzler, K.W. p53 function and dysfunction. Cell 70, 523-526, 1992.
    Vousden, K.H. p53: death star. Cell 103, 691-694, 2000.

    Wang, J., and Yi, J. Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7, 1875-1884, 2008.

    Wang, X.H., Aliyari, R., Li, W.X., Li, H.W., Kim, K., Carthew, R., Atkinson, P., and Ding, S.W. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452-454, 2006.

    Werness, B.A., Levine, A.J., and Howley, P.M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-79, 1990.

    Wu, H.C., Chiu, C.S., Wu, J.L., Gong, H.Y., Chen, M.C., Lu, M.W., and Hong, J.R. Zebrafish anti-apoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish Shellfish Immunol 24, 436-449, 2008.

    Xie, M., Liu, D., and Yang, Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 10, 200004, 2020.

    Xie, T., Peng, W., Liu, Y., Yan, C., Maki, J., Degterev, A., Yuan, J., and Shi, Y. Structural basis of RIP1 inhibition by necrostatins. Structure 21, 493-499, 2013.

    Xie, Z., and Klionsky, D.J. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109, 2007.

    Yang, W., Lam, P., Kitching, R., Kahn, H.J., Yee, A., Aubin, J.E., and Seth, A. Breast cancer metastasis in a human bone NOD/SCID mouse model. Cancer Biol Ther 6, 1289-1294, 2007.
    Yuan, J., and Kroemer, G. Alternative cell death mechanisms in development and beyond. Genes Dev 24, 2592-2602, 2010.

    Zhang, H., Jiang, H., Zhu, L., Li, J., and Ma, S. Cancer-associated fibroblasts in non-small cell lung cancer: Recent advances and future perspectives. Cancer Lett 514, 38-47, 2021.

    Zhu, T.S., Costello, M.A., Talsma, C.E., Flack, C.G., Crowley, J.G., Hamm, L.L., He, X., Hervey-Jumper, S.L., Heth, J.A., Muraszko, K.M., DiMeco, F., Vescovi, A.L., and Fan, X. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 71, 6061-6072, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE