簡易檢索 / 詳目顯示

研究生: 林璟宏
Lin, Ching-Hung
論文名稱: 金屬針生物組織電磁熱燒灼微創治療系統介面設計與溫升分析
System Interface Design and Heating Analysis of Electromagnetic Therapy Needle Based Minimum Invasive Treatment in Biological Tissue
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 電磁熱燒灼非線性迴歸分析溫度回授控制人機介面
外文關鍵詞: electromagnetic thermal ablation therapy, nonlinear regression, temperature feedback control, Human-Machine interface
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁熱燒灼微創治療是藉由高頻感應加熱器於體外產生一交變磁場,並對植入腫瘤細胞周圍的金屬針加熱,藉此殺死腫瘤細胞並達到熱療之效果。本研究主題在於由金屬針尾與針尖之所量測到之實驗溫度數據分析,推導出不同電流大小及治療深度距離之溫度預測方程式,並設計人機介面供醫師設定治療時間、選擇治療選項、監控治療時之金屬針溫度並以圖形化介面預覽加熱效果。經實驗結果,以統計軟體之非線性迴歸分析實驗數據,得到甲狀腺針之溫度預測方程式,並建立於醫療人機介面中,讓醫護人員可於治療前預知金屬針治療之溫昇效果,並在電磁熱療系統執行時,自動依此預測方程式進行溫度回授控制,確保金屬針尖治療溫度可控制於55 ℃至95 ℃之間,達成更準確且更安全之治療目的。

    The idea of minimally invasive electromagnetic thermal ablation therapy is to create an alternating magnetic field in vitro by high-frequency induction heater, and in the magnetic field, the metal needle surrounding the tumor cells can be heated, so as to kill tumor cells and achieve the effect of thermal therapy. The objective of this study was to analyze the temperature data of the metal needle end and point measured in the experiment in order to derive the temperature prediction equation for different currents and depths of therapy. In addition, a man-machine program was designed to allow the doctor to set the time of therapy, choose from the therapy options, monitor the temperature of the metal needle in therapy and preview the heating effect through a graphical interface. Based on the experimental results, we performed nonlinear regression analysis for the experimental data with statistical software and derived the temperature prediction equation for the thyroid needle. Then, the equation was set in the medical Human-Machine interface to allow the medical staff to predict the temperature rise of metal needle before therapy. During the course of the electromagnetic thermal therapy system, temperature feedback control could be performed automatically according to this equation, so as to ensure that the treatment temperature of the metal needle is controlled between 55℃ and 95℃, helping achieve the purpose of therapy more accurately and safely.

    目錄 摘 要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究背景 1 1-2 熱治療簡介 2 1-3 國內外文獻回顧 3 1-4 研究動機與目的 9 1-5 論文架構 9 第二章 高頻感應加熱原理 10 2-1 簡介 10 2-2 感應加熱原理 10 2-3 電磁感應加熱物理特性 11 2-3-1 電能轉換成磁能階段 11 2-3-2 磁能轉換成電能階段 11 2-3-3 電能轉換成熱能階段 12 2-3-4 集膚效應 13 2-3-5 電阻係數 14 2-3-6 鄰近效應 15 2-4 感應加熱物理特性整理 15 第三章 系統架構設計 17 3-1 前言 17 3-2 系統架構 17 3-3 實驗使用之金屬針具 18 3-4 溫度感測器介紹 20 3-4-1 光纖溫度感測器 20 3-4-2 熱電偶溫度感測器 21 3-4-3 溫度即時訊號轉換盒 22 3-5 3匝包粉線圈(3 Turns WES Coil)介紹 22 3-5-1 3匝包磁粉線圈規格及線圈實測值 23 3-5-2 3匝線圈電感公式推導 23 3-6 感應加熱之金屬針於生物體內針尖溫度模擬結果 25 3-7 以VB開發醫療人機介面 30 3-7-1 Visual Basic簡介 30 3-7-2 通訊方式 31 3-7-3 溫度控制軟體流程 31 3-7-4 人機介面設計及操作 33 第四章 結果與討論 36 4-1 測試系統介紹 36 4-2 金屬針於生物組織熱燒灼實驗設計 37 4-3 特性方程組建立於人機介面 48 第五章 結論與未來展望 50 5-1 結論 50 5-2 未來展望 52 參考文獻 53 自述 62

    [1] S. A. Sapareto, and W. C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 10, no. 6, pp. 787-800, June 1984.
    [2] F. J. Henriques, “Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury,” Arch. Pathol., vol. 43, no. 5, pp. 489-502, May 1947.
    [3] F. X. Bosch, J. Ribes, M. Diaz, and R. Cleries, “Primary liver cancer: Worldwide incidence trends, ” Gastroentrology, vol. 127, no. 5, pp. 5-16, Nov. 2011.
    [4] M. Nikfariam, V. Muralidharan, and C. Christophi, “Mechanisms of focal heat destruction of liver tumors,” J.Surg. Res., vol. 127, no. 2, pp. 208-223, Aug. 2005.
    [5] F. T. J. Lee, D. Haemmerich, A. S. Wright, D. M. Mahvi, L. A. Sampson, and J. G. Webster, “Multiple probe radiofrequency ablation: pilot study in an animal model,” Jour. Vasc. Inter. Radiol., vol. 14, no. 11, pp.1437-1442, 2003.
    [6] A. L. Denys, T. D. Baere, V. Kuoch, B. Dupas, P. Chevallier, D. C. Madoff, P. Schnyder, and F. Doenz, “Radio-frequency tissue ablation of the liver: In vivo and ex vivo experiments with four different system ,” Eur. Radiol., vol. 13, no. 10, pp. 2346-2352, 2003.
    [7] D. S. K. Lu, S. S. Raman, P. Limanond, D. Aziz, J. Economou, R. Busuttil , and J. Sayre, “ Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors,” Jour. Vasc. Inter. Radiol., vol. 14, no. 10, pp. 1267-1274, 2003.
    [8] C. L. Brace, “Microwave ablation technology: What every user should know,” Curr. Probl. Diagn. Radiol., vol. 38, no. 2, pp. 61-67, Apr. 2009.
    [9] P. Prakash, G. Deng, M. C. Converse, J. G. Webster, D. M. Mahvi, and M. C. Ferris, “Design optimization of a robust sleeve antenna for hepatic microwave ablation,” Phys. Medi. Biol., vol. 53, no. 4, pp. 1057-1069, 2008.
    [10] C. J. Lo, C. Y. Chen, H. W. Tsai, R. Zuchini, G. B. Lee, and X. Z. Lin, “Partial splenectomy using an electromagnetic thermal surgery system in a porcine model,” Internet Journal of Hyperthermia, vol. 27, no. 2, pp. 108-115, 2011.
    [11] C. Y. Chen, R. Zuchini, H. W. Tsai, C. H. Huang, S. C. Huang, G. B. Lee, and X. Z. Lin, “Electromagnetic thermal surgery system for liver resection: An animal study,” Internet Journal of Hyperthermia, vol. 26, no. 6, pp. 604-609, 2010.
    [12] R. Zuchini, C. H. Huang, H. W. Tsai, S. C. Huang, C. P. Lin, C.Y. Chen, G. B. Lee, and X. Z. Lin, “Electromagnetic thermoablation to treat thrombocytopenia in cirrhotic and hypersplenic rats,” Journal of Gastroenterology and Hepatology, vol. 25,no. 9, pp. 1578- 1586, Sep. 2010.
    [13] 行政院衛生署,「99年死因統計結果 行政院衛生署」, 原水文化出版社, 2011。
    [14] 邱宗傑,「別怕癌症!最新防癌治療癌醫療新知」, 衛生署統計室, 2007。
    [15] S. Bae, et al., "AC Magnetic-Field-Induced Heating and Physical Properties of Ferrite Nanoparticles for a Hyperthermia Agent in Medicine," Nanotechnology, IEEE Transactions on, vol. 8, pp. 86-94, 2009.
    [16] M. Bekovic and A. Hamler, "Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field," Magnetics, IEEE Transactions on, vol. 46, pp. 552-555, 2010.
    [17] E. Neufeld, et al., "Latest advances in EM hyperthermia cancer treatments," Electromagnetics in Advanced Applications, International Conference on, pp. 1016-1019, 2009.
    [18] X. Wang, et al., "Induction Heating of Magnetic Fluids for Hyperthermia Treatment," Magnetics, IEEE Transactions on, vol. 46, pp. 1043-1051, 2010.
    [19] J. Y. Chapelon, et al., "Treatment of localised prostate cancer with transrectal high intensity focused ultrasound," European journal of ultrasound, vol. 9, pp. 31-38, 1999.
    [20] H. A. Wheeler, “Inductance formulas for circular and square coils,” Proce. of the IEEE, vol. 70, no. 12, pp. 1449-1450, Dec. 1982.
    [21] J. G. Lynn, et al., "A new method for the generation and use of focused ultrasound in experimental biology," The Journal of General Physiology, vol. 26, pp. 179, 1942.
    [22] S. C. Huang, Y. Y. Chang, Y. J. Chao, Y. S. Shan, X. Z. Lin, and G. B. Lee, “Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery,” IEEE Trans. Biomed., vol. 59, no. 3, pp. 824–831, Mar. 2012.
    [23] 陳明坤,「磁性奈米粒子熱治療系統」,國科會提案計畫報告,2006。
    [24] 蕭正昌,「應用於腫瘤熱療之奈米磁粒加熱系統研製」,國立成功大學電機工程學系碩士論文, 2006。
    [25] 陳明坤、戴政祺,「半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用」,生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,2006。
    [26] 李育芸,「感應加熱應用於模具快速加熱之研究」,私立中原大學機械工程學系碩士論文, 2002。
    [27] 范家瑞,「電磁感應技術應用於模具快速加熱系統」,國立成功大學機械工程學系碩士論文, 2008。
    [28] 陳建璋,「半橋串聯共振式磁奈米粒熱療加熱系統研製」,國立成功大學電機工程學系碩士論文, 2007。
    [29] 黃聖傑,「電磁熱療系統於內科微創手術及外科器切除之應用」,國立成功大學工程科學系碩士論文, 2010。
    [30] 蘇信華,「奈米磁粒熱療感應加熱系統之研製」,國立成功大學電機工程學系碩士論文, 2008。
    [31] 孔維彬,「以有限元素分析法作感應加熱線圈分析」,國立成功大學電機工程學系碩士論文, 2008。
    [32] 林子翔,「奈米粒熱療加熱系統之中低頻磁場聚焦探頭設計」,國立成功大學電機工程學系碩士論文, 2009。
    [33] 曾名弘,「奈米粒熱療加熱系統之模擬與探頭模型分析」,國立成功大學電機工程學系碩士論文, 2011。
    [34] 徐彬翔,「高頻感應加熱器之DSP數位控制設計」,國立成功大學電機工程學系碩士論文, 2011。
    [35] 陳勁克,「以DSP建構數位監控系統於腫瘤電磁熱療系統」,國立成功大學電機工程學系碩士論文, 2011。
    [36] 吳明璋,「大功率電磁熱療系統之數位回授溫度控制」,國立成功大學電機工程學系碩士論文, 2012。
    [37] 游本傳,「15-kW數位控制式高週波加熱系統之自動頻率追蹤」,國立成功大學電機工程學系碩士論文, 2012。
    [38] 曾子庭,「電磁熱療系統之即時數位電流回授控制」,國立成功大學電機工程學系碩士論文, 2012。
    [39] 陳仰豪,「多頻段感應加熱系統設計與大電流感測應用」,國立成功大學電機工程學系碩士論文, 2012。
    [40] 陳立元、范逸之、廖錦棋,「Visual Basic 2010 與自動化系統監控-RS232串列通訊篇」松崗資訊, 2012。
    [41] C. C. Chen, C. C. Tai, S. J. Huang, Y. H. Chen, and C. H. Lin, “Thermotherapy Induction Heating Apparatus with New Magnetic-Wrapped Coil Design,” IEEE Trans. Ind. Electron., no: 12-TIE-2237. R2, Accepted.
    [42] C. C. Tai, S. J. Huang , X. Z. Lin C. C. Chen, C. H. Lin, “Magnetic Field Generating Apparatus for Hyperthermia Therapeutic Needle,” SEMBA-2013生醫工程應用研討會, 2013.
    [43] N. Bhardwaj, A. D. Strickland, L. Atanesyan, K. West, and D. M. Lloyed, “ A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver,” Pathology, vol. 41, no. 2, pp. 168-172, Feb. 2009.
    [44] P. R. Geraghty, S. T. Kee, G. McFarlane, M. K. Razavi, D. Y. Sze,and M. D. Dake, “CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate,” Radiology, vol. 299, no. 2, pp. 475-481, 2003.
    [45] M. Horii, N. Takahashi, and T. Narita, “Investigation of Evolution Strategy and Optimization of Induction Heating Model,” Magnetics, IEEE Transactions on, vol. 36, no. 4, pp. 1085-1088, 2000.
    [46] H. Kurose, D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka, “3-D Eddy Current Analysis of Induction Heating Apparatus Considering Heat Emission,Heat Conduction, and Temperature Dependence of Magnetic Characteristics,” Magnetics, IEEE Transactions on, vol. 45, no. 3, pp. 1847-1850, 2009.
    [47] N. Tsopelas and N. J. Siakavellas, “Influence of Some Parameters on the Effectiveness of Induction Heating,” Magnetics, IEEE Transactions on, vol. 44, no. 12, pp. 4711-4720, 2008.
    [48] 高材、林康平、林峰輝、陳家進,「生物醫學工程導論」中華民國生物醫學工程學會策劃,滄海書局, 2010年。
    [49] H. Kagimoto ,D. Miyagi, N. Takahashi, N. Uchida, and K. Kawanaka “Effect of Temperature Dependence of Magnetic Properties on Heating Characteristics of Induction Heater,” Magnetics, IEEE Transactions on, vol. 46, no. 8, pp. 3018-3021, 2010.
    [50] H. Watanabe, N. Yamazaki, Y. Isobe, X. W. Lu, Y. Kobayashi, T. Miyashita, T. Ohdaira, M. Hashizume, and M. G. Fujie, “Validation of Accuracy of Liver Model with Temperature-Dependent Thermal Conductivity by Comparing the Simulation and in vitro RF Ablation Experiment,” 34th Annual International Conference of the IEEE EMBS, pp. 5716-5717, 2012.
    [51] R. H. Taylor and D. Stoianovici, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 765-781, 2003.
    [52] P. Daraio, B. Hannaford and A. Menciassi, “Smart Surgical Tools and Augmenting Devices,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 782-792, 2003.
    [53] H. Watanabe, N. Yamazaki , Y. Kobayashi, T. Miyashita, M. Hashizume, M. G. Fujie, “Temperature Dependence of Thermal Conductivity of Liver Based on Various Experiments and a Numerical Simulation for RF Ablation,” in Proceeding of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3222-3228, 2010.
    [54] H. Watanabe, N. Yamazaki, Y. Kobayashi, T. Miyashita, M. Hashizume, M. G. Fujie, “Estimation of Intraoperative Blood Flow During Liver RF Ablation Using a Finite Element Method-based Biomechanical Simulation,” in Proceeding of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’11), pp. 7441-7445, 2011.
    [55] D. Haemmerich, S. Tungjitkusolmun, S. T. Staelin, F. T. Lee, Jr., D. M. Mahvi, J. G. Webster, “Finite-Element Analysis of Hepatic Multiple Probe Radio-Frequency Ablation,” IEEE Trans. Biomed. Eng, vol. 49, no. 7, pp. 836-842, 2002.
    [56] M. K. Jain, P. D. Wolf, “A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation,” Annals of Biomedical Engineering, vol. 28, pp. 1075-1084, 2000.
    [57] I. Chang, “Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity,” Biomedical Engineering Online, pp. 2-12, 2003.
    [58] M. Asili,E. Colebeck, R. Green, and E. Topsakal, “The Effect of Temperature on Antenna Return Loss for Microwave Ablation Antennas,” Radio Science Meeting (USNC-URSI NRSM), 2013 US National Committee of URSI National, 2013.
    [59] S. Maini, Member, IEEE and Anupma Marwaha, “Design and Performance Analysis of Multisection Floating Sleeve Antenna using FEM for Interstitial Microwave Ablation for HCC,“ 2013 IEEE Point-of-Care Healthcare Technologies (PHT)Bangalore, India, pp. 16 - 18 January, 2013.
    [60] S. Prasantamrongsiri, P. Phasukkit, C. Pintavirooj, S. Tungjitkusolmun and A. Sanpanich, “3D Finite Element Analysis for Varicose Vein Therapy by Using Microwave Ablation“, The 2012 Biomedical Engineering International Conference (BMEiCON-2012), 2012.
    [61] W. H. Kim, T. H. Woo, M. K. Yoo, J. W. Cho,D. S. Kwon, Y. S. Chung, and C. Y. Cheon, “A New Method for Remedy of Varicose Vein Using Horn Antenna,” IEEE Trans. Biomed. Eng., 2010.
    [62] A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF Microwaves in Medicine,” IEEE Transaction On Microwave Theory and Techniques,vol. 50, no. 3, pp. 963–974, 2002.
    [63] W. Jakawanchaisri, A. Sanpanich, P. Phasukkit, C. Pintavirooj, and S. Tungjitkusolmun, “FEM Analysis of Microwave Ablation for Snoring Therapy by Using Real Image,”ICBET2012, June 2012.
    [64] W. W. Hope, T. M. Schmelzer, W. L. Newcomb, J. J. Heath, A. E. Lincourt, H. J. Norton, B. T. Heniford, and D. A. Iannitti, “Guidelines for power and time variables for microwave ablation in an in vivo porcine kidney,” J Surg Res, vol. 153, no. 2, pp. 263–267, May 2009.
    [65] D. Yang, M. C. Converse, D. M. Mahvi, and J. G. Webster, “ Measurement and analysis of tissue temperature during microwave liver ablation,” IEEE Trans. Biomed. Eng, vol. 54, no. 1, pp. 150-155, Jan. 2007.
    [66] C. L. Brace, P. F. Laeseke, L. A. Sampson, T. M. Frey, D. W. V. D. Weide, and F. T. Lee, “Microwave Ablation with Multiple Simultaneously Powered Small-gauge Triaxial Antennas Results from an in Vivo Swine Liver Model,” Radiology, vol. 244, no. 1, pp. 151-156, July. 2007
    [67] P. Keangin, P. Rattanadecho, and T. Wessapan, “An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna,” Int Commun Heat Mass, vol. 38, no. 6, pp. 757- 766, Jul. 2011.
    [68] K. Saito, T. Taniguchi, H. Yoshimura, and K. Ito., “Clinical trial of interstitial microwave hyperthermia by use of coaxial-slot antenna with two slots,” IEEE Trans. Microw Theory, vol. 52, no. 8, pp. 1987-1991, Aug. 2004.
    [69] P. Phasukkit, S. Tungjitkusolmun, and M. Sangworasil, “Finite element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation,” IEEE Trans. Biomed. Eng, vol. 56, no. 11, pp. 2564-2572, Nov. 2009.
    [70] C. L. Brace, P. F. Laeseke, W. Daniel, V. D. Weide, and F. T. Lee, “Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver,” Microwave Theory and Techniques, IEEE Transactions on, vol. 53, pp. 215-220, Jan. 2005.
    [71] E. S. McCreedy, R. Cheng, P. F. Hemler, A. Viswanathan, B. J. Wood, and M. J. McAuliffe, “Radio Frequency Ablation Registration, Segmentation, and Fusion Tool,” Information Technology in Biomedicine, IEEE Transactions on, vol. 10, pp. 490-496, July 2006.
    [72] C. F. Huang, X. Z. Lin, and W. H. Lo, “Design and Construction of a Hyperthermia System with Improved Interaction of Magnetic Induction-Heating,” 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, Sep 2010.
    [73] J. W. Strohbehn, B. S. Trembly, and E B. Douple, “Blood Flow Effects on the Temperature Distributions from an Invasive Microwave Antenna Array Used in Cancer Therapy,” IEEE Trans. Biomed. Eng, vol. BME-29, pp. 649-661, Sep 1982.
    [74] N. N. He, W. P. Wang, Z. B. Ji, C. L. Li, B. J. Huang, “Microwave Ablation: An Experimental Comparative Study on Internally Cooled Antenna versus Non-internally Cooled Antenna in Liver Models,” Academic Radiology, vol. 17, pp. 894–899, July 2010.
    [75] M. Cavagnaro, C. Amabile, P. Bernardi, S. Pisa and N. Tosoratti, “A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and Experimental Assessment,” IEEE Trans. Biomed. Eng, vol. 58, pp. 949-959, April 2011.
    [76] 田育瑋,「應用於腫瘤微波熱療技術之天線針與其加熱系統之研發」,私立大同大學通訊工程學系碩士論文, 2012。
    [77] N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles properties and prospects for their use in human medicine,” Trends In Biotechnology, vol. 26, pp. 425–433, 2008.
    [78] P. Moroz, S. K. Jones, B. N. Gray, “Magnetically mediated hyperthermia: current status and future directions,” International Journal of Hyperthermia, vol. 18, no. 4, pp. 267-284, 2002.
    [79] C. Plank, "Nanomagnetosols: magnetism opens up new perspectives for targeted aerosol delivery to the lung," Trends in Biotechnology, vol. 26, pp. 59-63, 2008.
    [80] X. Wang, L. Yang, Z. Chen, D. M. Shin, “Application of Nanotechnology in Cancer Therapy and Imaging,” CA: A Cancer Journal for Clinicians, vol. 58, pp. 97-110, 2008.
    [81] G. Kong, G. Anyarambhatla, W. P. Petros, R. D. Braun, O. M. Colvin, D. Needham, M. W. Dewhirst, “Efficacy of Liposome and Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug Release,” Cancer Research, vol. 60, 2000.
    [82] 葉美君,「合成Pt-Fe-HAP磁性粒子作為癌症熱療雙重治療之研究」,國立臺北科技大學材料及資源工程系研究所,2012。
    [83] B. Curtis.,“Functionalisation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D: Applied Physics ,pp. 198-206, 2003.
    [84] J. Xu.,“Preparation and characterization of carbon fibers coated by Fe3O4 nanoparticles,” Materials Science and Engineering B 132 , pp. 307–310, 2006.
    [85] L. P., D. L. and R. D. R., “Magnetic Properties of Nanostructured Materials,” Chemistry of Materials, pp. 1770-1783, 1996.
    [86] L. Wu, “Folate-mediated solid–liquid lipid nanoparticles for paclitaxel-coated poly(ethylene glycol) ” , Drug Development and Industrial Pharmacy, pp. 439-448, 2010.
    [87] S. K. Jones, and B. N. Gray, “Status of hyperthermia in the treatment of advanced liver cancer,” Journal of Surgical Oncology, pp. 259-269, 2001.
    [88] S. P. Mornet, et al., “Magnetic nanoparticle design for medical diagnosis and therapy. ” Materials Chemistry, pp. 2161-2175, 2004.
    [89] M. Shinkai, “Functional magnetic particles for Medical applications.” Journal of Bioscience and Bioengineering, pp. 606-613, 2002.
    [90] 許嘉戎,「表面接枝聚乙二醇和葉酸之磁性竹炭作為大腸癌熱療之研究」,國立臺北科技大學生物科技研究所, 2011。
    [91] M. Shinkai, M. Yanse, H. Honds, T. Wakabayashi, J. Yoshida, Kobayashi, “Intracellular hyperthermia for cancer using magnetite cationic liposome: in vitro study,” Jpn. J. Cancer Res., vol. 87, pp. 1179-1183, 1996.
    [92] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, “Medical Application of Functionalized Magnetic Nanoparticles,” Journal of bioscience and bioengineering, vol.100, no. 1, pp. 1-11, 2005.
    [93] L. B. Shinkai, M. Kiade, T. Honda, H., J. Yoshida, T. Wakabayashi, and T. Kobayashi , “Preparation of tumor-specific magnetoliposomes and their application for hyperthermia,” J. Chem. Eng. Jpn., vol. 34, pp. 66-72, 2001.
    [94] M. Shinkai, B. Le, H. Honda, K. Yoshikawa, K. Shimizu, S. Saga, T. Wakabayashi, J. Yoshida, and T. Kobayashi, “Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes,” Jpn. J. Cancer Res., vol. 92, pp. 1138-1145, 2001.
    [95] 詹子毅,「磁性明膠/磷酸鈣奈米球之製備分析及作為癌症熱療之研究」,國立台北科技大學材料科學與工程研究所, 2009。
    [96] 呂馥吟,「奈米磁顆粒結合Anti-VEGF抗體及PEG-400於體外對人類腎細胞癌細胞786-O進行磁性標靶溫熱療法之致死研究」,高雄師範大學生物科技系,2009。
    [97] A. L. Glover, J. B. Bennett , J. S. Pritchett, S. M. Nikles,D. E. Nikles, J. A. Nikles, and C. S. Brazel, “Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy,” Magnetics, IEEE Transactions on, vol. 49, no. 1, pp. 231-235, 2013.
    [98] C. Sun, J. S. H. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging and drug delivery,”Adv. Drug Deliv. Rev.:Inorganic Nanoparticles Drug Del., vol. 60, pp. 1252–1265, 2008.
    [99] M. G. Weimuller, M. Zeisberger, and K. M. Krishnan, “Sizedependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia,” J. Magn. Magn. Mater., vol. 321, pp. 1947–1950, 2009.
    [100] C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge, A. R. Foreman, J. V. Lierop, C. Gruttner, and R. Ivkov,“Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia,” Nanotechnology, vol. 20, pp. 395103, 2009.
    [101] N. J. Darton, B. Hallmark, X. Han, S. Palit, N. K. H. Slater, and M.R. Mackley, “The in-flow capture of superparamagnetic nanoparticles for targeting therapeutics,” Nanomed.: Nanotechnol., Biol. Med., vol.4, pp. 19–29, 2008.
    [102] M. S. Martina, C. Wilhelm, and S. Lesieur, “The effect of magnetic targeting on the uptake of magnetic-fluid-loaded liposomes by humanprostatic adenocarcinoma cells,”Biomaterials, vol. 29, pp. 4137–4145, 2008.
    [103] C. S. Brazel, “Magnetothermally-responsive nanomaterials: Combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release,” Pharm. Res., vol. 26, pp. 644–656, 2009.

    無法下載圖示 校內:2023-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE