| 研究生: |
彭俊翔 Peng, Jun-Xiang |
|---|---|
| 論文名稱: |
以醫學影像分析腰椎椎弓根的解剖位置及植入椎弓根螺釘之安全性 Analysis of Anatomical Location of Lumbar Pedicle and Security of Pedicle Screw Insertion Using Medical Images |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh 黃國淵 Huang, Kuo-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 椎弓根螺釘固定手術 、椎弓根 、醫學影像 |
| 外文關鍵詞: | pedicle screw fixation, pedicle, medical images |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當脊椎滑脫或脊椎椎節不穩定時,常常需要使用椎弓根螺釘固定手術,但椎弓根螺釘固定手術是有一定困難度及危險性的,因為椎弓根是一個形狀不規則且內徑狹窄的通道,所以必須有一定的經驗及手術技巧,才能夠正確的植入螺釘,目前台灣臨床上還是以傳統的仰賴醫生經驗及手感的方式為主,然而鄰近椎弓根有主要的中樞神經及血管等,椎弓根螺釘如果植入位置或角度不妥,螺釘沒有在椎弓根內而是穿透皮質骨層外露,將有很大的可能性造成神經或血管損傷,此時應盡快進行二次手術做處理,以期能減輕因螺釘誤置所導致的後遺症,所以如何判斷椎弓根螺釘的植入情形是一個值得探討的議題。
本研究透過醫學影像的測量及利用椎體轉動角度(θ)公式與橫切面螺釘角度(TSA)公式,蒐集椎弓根及椎弓根螺釘的尺寸、角度及位置等資訊,蒐集完畢後則是將這些資訊匯入運算軟體MATLAB,椎弓根形狀類似橢圓柱體,所以用橢圓柱體簡化模擬椎弓根;而螺釘則是以圓柱模擬,再由測量得到的角度及位置等數據去擺放橢圓柱體及圓柱體,最後得到的結果即是椎弓根螺釘植入情況的模擬。
從實際案例的分析結果來看,θ公式的平均絕對誤差為2.1o;TSA公式的平均絕對誤差為3.5o,而模擬結果與實際影像情況的趨勢皆能吻合,故此方法用於術後的初步檢查是可行的。
Pedicle screw fixation is a difficult and dangerous surgery, because the pedicle is irregular in shape and narrow in its diameter. In order to insert the screw correctly, the doctor must be very experienced and skillful. At present, this surgery still be operated in traditional way in Taiwan, it means that the doctor insert the screw by their experience. There are central nervous system and vein close to the pedicle. Once pedicle screw is inserted inappropriate and penetrates the cortical bone, it may cause damage to the nerve or vein, and it should be treated as soon as possible to prevent the complication. Therefore, this is an important topic that how to judge the condition of pedicle screw insertion.
In this study, we collect the sizes, angles and locations of pedicle and pedicle screw by use of the measurement in medical images and two formulas which is used to obtain the rotation angle of vertebrae (θ) and transverse screw angle (TSA). After that, we simply simulate the pedicle by elliptic cylinder and screw by cylinder in MATLAB, and place these two objects based on the information we collected, then we will get the three dimensional simulate result of pedicle screw insertion.
The results from the analysis on real case show that mean absolute error of θ is 2.1 degrees and the mean absolute error of TSA is 3.5 degrees. And the trend of simulation is the same as real images. Therefore, we believe that it works for the postoperative inspection by this simulation method.
[1] N. A. Ebraheim, J. R. Rollins, R. Xu and R. A. Yeasting (1996), “Projection of the lumbar pedicle and its morphometric analysis,” Spine Journal, vol. 21, pp. 1296-1300.
[2] CD HORIZON LEGACY 5.5 (2004), Spinal System-Degenerative Surgical Technique, Medtronic Sofamor Danek European Spine Center.
[3] A. F. Samdani, A. Ranade, D. M. Sciubba, P. J. Cahill, M. D. Antonacci, D. H. Clements and R. R. Betz (2010), “Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: how much of a difference does surgeon experience make?” European Spine Journal, vol. 19, pp. 91-95.
[4] D. A. Raley and R. J. Mobbs (2012), “Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine,” Spine Journal, vol. 37, pp. 1092-1100.
[5] M. R. Zindrick, L. L. Wiltse, A. Doornik, E. H. Widell, G. W. Knight, A. G. Patwardhan, J. C. Thomas, S. L. Rothiman and B. T. Fields (1987), “Analysis of the morphometric characteristics of the thoracic and lumbar pedicles,” Spine Journal, vol. 12, pp. 160-166.
[6] C. C. Yu, R. T. Yuh, N. S. Bajwa, J. O. Toy, U. M. Ahn and N. U. Ahn (2015), “Lower thoracic pedicle morphometry,” Spine Journal, vol. 40, pp. E323-E331.
[7] M. R. Zindrick, G. W. Knight, M. J. Sartori, T. J. Carnevale, A. G. Patwardhan and M. A. Lorenz (2000), “Pedicle morphology of the immature thoracolumbar spine,” Spine Journal, vol. 25, pp. 2726-2735.
[8] R. Roy-Camille, G. Saillant and C. Mazel (1986), “Internal fixation of the lumbar spine with pedicle screw plating,” Clinical Orthopaedics and Related Research, vol. 203, pp. 7-17.
[9] J. N. Weinstein, K. F. Spratt, D. Spengler, C. Brick and S. Reid (1988), “Spinal pedicle fixation reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement,” Spine Journal, vol. 13, pp. 1012-1018.
[10] K. J. Chung, S. W. Suh, S. Desai and H, R, Song (2008), “Ideal entry point for the thoracic pedicle screw during the free hand technique,” International Orthopaedics, vol. 32, pp. 657-662.
[11] 李现令、李现今、张学军、鲁守彦、赵 萍、李承鑫、孙 琳、张昆亚與张钦明(2011),「脊柱椎弓根螺钉应用的生物力学特征」,中国组织工程研究杂志,第15卷第30期,第5640-5645頁。
[12] 邓东海、于滨生、王文豪、俞莉敏、温健、马俊轩與周艺(2015),「微创L5椎弓根钉进钉点的有效性分析」,中国组织工程研究杂志,第19卷第26期,第5640-5645頁。
[13] S. Klein, C. M. Whyne, R, Rush and H. J. Ginsberg (2009), “CT-based patient-specific simulation software for pedicle screw insertion,” Journal of Spinal Disorders & Techniques, vol. 22, pp. 502-506.
[14] J. Silbermann, F. Riese, Y. Allam, T. Reichert, H. Koeppert and M. Gutberlet (2011), “Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques,” European Spine Journal, vol. 20, pp. 875-881.
[15] Y. Allam, J. Silbermann, F. Riese and R. Greiner-Perth (2013), “Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between free hand and a generic 3D-based navigation techniques,” European Spine Journal, vol. 22, pp. 648-653.
[16] S. Lu, Y. Q. Xu, Y. Z. Zhang, Y. B. Li, LE Xie, J. H. Shi, H. Guo, G. P. Chen and Y. B. Chen (2009), “A novel computer-assisted drill guide template for lumbar pedicle screw placement: a cadaveric and clinical study,” The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, pp. 184-191.
[17] 夏笙(2005),「應用於椎莖骨釘植入之CT影像式手術導引系統」,國立中央大學機械工程研究所碩士論文。
[18] M. R. Zindrick, L. L. Wiltse, E. H. Widell, J. C. Thomas, W. R. Holland, B. T. Field and C. W. Spencer (1986), “A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine,” Clinical Orthopaedics and Related Research, vol. 203, pp. 99-112.
[19] W. Sterba, D. Kim, D. P. Fyhrie, Y. N. Yeni and R. Vaidya (2007), “Biomechanical analysis of differing pedicle screw insertion angles,” Clinical Biomechanics, vol. 22, pp. 385-391.
[20] 史可强、徐兆万、雷云霞與王海奎(2009),「SSA角度与椎弓根螺钉拔持力的相关性研究」,中国骨质疏松杂志,第15卷第3期,第183-186頁。
[21] National cancer institute. Available: http://training.seer.cancer.gov/anatomy/
body/terminology.html [April 22, 2016].
[22] 台灣脊椎中心. Available: http://taiwanspinecenter.com.tw/tsc_c/education/
spine_anatomy/vertebral_column.htm [April 22, 2016].
[23] H. Gray (1918), Anatomy of the Human Body, Philadelphia: Lea & Febiger.
[24] H. L. A. Defino and J. R. B. Vendrame (2001), “Role of cortical and cancellous bone of the vertebral pedicle in implant fixation,” European Spine Journal, vol. 10, pp. 325-333.
[25] P. A. Robertson and N. R. Stewart (2000), “The Radiologic Anatomy of the Lumbar and Lumbosacral Pedicles,” Spine Journal, vol. 25, pp. 709-715.
[26] B-X. Zhou, J-P. Yue, G-Y. Xi and J. Li (2014), “Rigid-body deformation monitoring of buildings based on terrestrial laser scanning (TLS) technology,” Lasers in Engineering, vol. 27, pp. 277-288.
校內:2018-08-01公開