簡易檢索 / 詳目顯示

研究生: 李宗哲
Lee, Zong-Zhe
論文名稱: 退化狀態下生產時間與備用元件最佳策略之研究
Joint Determination of the Production Run time and the Optimal Number of Standby Components in Deteriorating Production Processes
指導教授: 謝中奇
Hsieh, Chung-Chi
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理科學系
Department of Industrial Management Science
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 43
外文關鍵詞: EMQ, deterioration, standby
相關次數: 點閱:56下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    In the classical EMQ model, all items are assumed to be of perfect quality. Because
    this assumption is not practical in real production systems, recent studies focus
    on deteriorating production systems, in which defective items are incurred. In the
    past EMQ models, they have considered inspection intervals, maintenance strategies,
    machine breakdown and etc. respectively or jointly. In this study, we develop four
    EMQ models for a deteriorating standby production system consisting of a core production
    station with a key production component, a repair shop and a set of standby
    components. The key production component will shift from an in-control state to an
    out-of-control state during the production run, and some percentage of the items produced
    is defective. The deteriorating component will then be replaced by a standby
    component, if available; and if the replacement is made, all the items produced are
    of perfect quality until next deterioration occurs. Four EMQ models both with nonrepairable
    components and with repairable components are discussed. Our objective
    is to determine the optimal production cycle time and the optimal number of standby
    components for each EMQ model by minimizing the annual cost. Finally, numerical
    examples are provided to illustrate the optimal policies for these four EMQ models.

    ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 C lassical EMQModel . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Extended EMQModels . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 The EMQ Model with Imperfect Production Processes 7 2.2.2 EMQModels with Inspection Schedules . . . . . . . . 9 2.2.3 EMQModels withMaintenance . . . . . . . . . . . . 12 2.3 The Standby System . . . . . . . . . . . . . . . . . . . . . . . . 13 III. EMQ MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 EMQModels with Non-repairable C omponents . . . . . . . . . 18 3.1.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 EMQModel with Repairable C omponents . . . . . . . . . . . . 25 3.2.1 Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . 26 IV. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . 32 4.1 Illustrative Example forModel 1 . . . . . . . . . . . . . . . . . 32 4.2 Illustrative Example forModel 2 . . . . . . . . . . . . . . . . . 33 4.3 Illustrative Example forModel 3 . . . . . . . . . . . . . . . . . 36 4.4 Illustrative Example forModel 4 . . . . . . . . . . . . . . . . . 37 V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 40 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Berk, E. and Moinzadeh, K. Analysis of maintenance policies for M machines with
    deteriorating performance. IIE Transactions, 32, 433-444, 2000.
    Chiang, J. H. and Yuan, J. Optimal maintenance policy for a Markovian system under
    periodic inspection. Reliability Engineering and System Safety, 71, 165-172, 2001.
    Ciampoli, M. Time dependent reliability of structural systems subject to deterioration.
    Computers and Structures, 67, 29-35, 1998.
    Groenevelt, H., Pintelon, L. and Seidmann, A. Production lot sizing with machine
    breakdowns. Management Science, 38(1), 104-123, 1992.
    Hsieh, C. C. and Chiu, K. C. Optimal maintenance policy in a multistate deteriorating
    standby system. European Journal of Operational Research, 141(3), 691-700,
    2002.
    Kim, C. H. and Hong, Y. An extended EMQ model for a failure prone machine with
    general lifetime distribution. International Journal of Production Economics, 49,
    215-223, 1997.
    Kim, C. H. and Hong, Y. An optimal run length in deteriorating production processes.
    International Journal of Production Economics, 58, 183-189, 1999.
    Lee, H. L. and Rosenblatt, M. J. Simultaneous determination of production cycle
    and inspection schedules in a production system. Management Science, 33(9),
    1125-1136, 1987.
    Lee, H. L. and Rosenblatt, M. J. A production and maintenance planning model with
    restoration cost dependent on detection delay. IIE Transactions, 21(4), 368-375,
    1989.
    Lee, J. S. and Park, K. S. Joint determination of production cycle and inspection intervals
    in a deteriorating production system. Journal of the Operational Research
    Society, 42(9), 775-783, 1991.
    Lin, C., Madu, C. N., Chien, T. W. and Kuei, C. H. Queueing models for optimizing
    system availability of a flexible manufacturing system. Journal of the Operational
    Research Society, 45(10), 1141-1155, 1994.
    Liou, M. J., Tseng, S. T. and Lin, T. M. The effects of inspection errors to the imperfect
    EMQ model. IIE Transactions, 26(2), 42-51, 1994.
    Makis, V. Optimal lot sizing and inspection policy for an EMQ model with imperfect
    inspections. Naval Research Logistics, 45, 165-187, 1998.
    Makis, V. and Fung, J. An EMQ model with inspections and random machine failures.
    Journal of the Operational Research Society, 49, 66-76, 1998.
    Porteus, E. L. The impact of inspection delay on process and inspection lot sizing.
    Management Science, 36(8), 999-1007, 1990.
    Rosenblatt, M. J. and Lee, H. L. Economic production cycles with imperfect production
    processes. IIE Transactions, 18(1), 48-55, 1986.
    Ross, S. M. Introduction to Probability Models, 6th ed. Academic Press, 1997.
    Shanthikumar, J. G. and Yao, D. D. Optimal server allocation in a system of multiserver
    stations. Management Science, 33(9), 1173-1180, 1987.
    Tseng, S. T., Yeh, R. H. and Ho,W. T. Imperfect maintenance policies for deteriorating
    production systems. International Journal of Production Economics, 55, 191-201,
    1998.
    Wang, C. H. and Sheu, S. H. Fast approach to the optimal Production/PM policy.
    Computers and Mathematics with Applications, 40, 1297-1314, 2000.
    Wang, C. H. and Sheu, S. H. Simultaneous determination of the optimal productioninventory
    and product inspection policies for a deteriorating production system.
    Computers and Operations Research, 28, 1093-1110, 2001.
    Wang, K. H. and Kuo, C. C. Cost and probabilistic analysis of series system with
    mixed standby components. Applied Mathematical Modelling, 24, 957-967, 2000.
    Zeng, A. Z. and Zhang, T. A queueing model for designing an optimal three-dimensional
    maintenance float system. Computers and Operations Research, 24(1), 85-95,
    1997.

    下載圖示 校內:立即公開
    校外:2002-06-20公開
    QR CODE