| 研究生: |
李民楷 Lee, Min Kai |
|---|---|
| 論文名稱: |
利用核磁共振方法研究奈米材料 NMR studies of nanoconfined materials |
| 指導教授: |
田聰
Tien, Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 核磁共振 、奈米多孔材料 |
| 外文關鍵詞: | NMR, nanoconfined materials, metal, ferroelectrics, atomic mobility, phase transition |
| 相關次數: | 點閱:70 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要的研究著墨於金屬與鐵電材料在奈米多孔材料中,其物理性質相對於塊材(巨觀尺度下)的差異性。就液態金屬於奈米多孔材料中而言,相較於其塊材的物理性質 我們觀察到其奈特位移(Knight shift)降低,原子的遷移率減低,熔點與凝固點下降且顯現清楚的熱滯現象。更近一步的研究顯示,對於奈米多孔材料中的液態鎵與銦而言,原子的遷移率減低證實了自旋鬆弛的加速是由於四偶極矩作用的貢獻增加所致。對於中孔洞材料中的鐵電物質而言,我們的核磁共振研究顯示了孔洞中的鐵電物質有著不同的結構且分別有著差異相當大的自旋鬆弛速率。自旋鬆弛速率較慢的結構有著類似於塊材的行為,但是鐵電相變的溫度區間變得較寬且鐵電相變的溫度變得較低。而對於中孔洞材料中的NaNO2之自旋鬆弛速率較快的結構而計算出的原子遷移率得知,其行為較符合於某種融熔態或準融熔態所表現的行為。
In this thesis, we report the influence of physical property of metals and ferroelectrics under nanoconfinement. For confined liquid metals, we observed the reduction of Knight shift, melting and freezing phase transition, and atomic mobility comparing to bulk liquid metals. In addition, the slowdown of atomic mobility manifest as acceleration of nuclear spin relaxation for confined liquid gallium and indium caused by enhancement of quadrupole interaction. For confined ferroelectrics, our NMR studies show that there are complex structures in confined materials which correspond to different nuclear relaxation rates. The ferroelectric phase transition become broader and is shifted to lower temperature for the bulk-like component with slower relaxation rate. The faster component in confined sodium nitrite show its behavior corresponding to some sort of melted or premelted state in accordance of our calculation of atomic mobility.
1. Zeitschrift für Physik 9: 353–355.
2. I.I. Rabi, (1937) Phys.Rev. 51, 652-654.
3. I.I. Rabi, J.R. Zacharias, S. Millman, P. P. Kusch, (1938) Phys.Rev. 53, 318.
4. I.I. Rabi, S. Millman, P. P. Kusch, J.R. Zacharias, (1939) Phys.Rev. 55, 526-535.
5. E.M. Purcell, H.C. Torrey, R.V. Pound, (1946) Phys.Rev. 69, 37-38.
6. F.Bloch, W.W. Hansen, M.E. Packard, (1946) Phys.Rev. 69, 680.
7. E.L. Hahn, (1950) Phys.Rev. 80, 580-594.
8. R. R. Ernst, W. A. Anderson, (1966) Rev. Sri. Instrum. , 37, 93.
9. R. R. Ernst, (1966) Adv. Mugn. Reson., 2, 1.
10. P. C. Lauterbur (1973) Nature 242, 190 - 191
11. J. Rouquerol et al., (1994) Pure & Appl. Chem, 66 1739-1758
12. A. F. Cronsdedt (1756) Akad. Handl. Stockholm., 18, 120.{ Source: Flanigen, E. M, Introduction to Zeolite Science and Practice. Bekkum, H. V.; Flanigen, E. M.; Jacobs.; Jansen, J. C (Eds), 2edition, Elsevier Science, Amsterdam (2001). }
13. J. S. Beck; J. C. Vartuli; W. J. Roth; M. E. Leonowicz; C. T. Kresge; K. D. Schmitt; C. T-W. Chu; D. H. Olson; E. W. Sheppard; S. B. McCullen; J. B. Higgins; and J. L. Schlenkert. (1992) J. Am. Chem. Soc. 114 10834–10843.
14. W.E.S. Turner, F. Winks Journal of the Society of Glass Technology (1926) 102 74
15. Pawel Pieranski, (1983) Contemp. Phys., 24, 25.
16. R. C. Williams, & K. M. Smith, (1957) Nature 179, 119.
17. J. V. Sanders (1964) Nature 204, 1151
18. P. J. Darragh, A. J Gaskin, B. C. Terrell, & J. V. Sanders (1966) Nature 209, 13.
19. W. Stöber, A. Fink & E. Bohn (1968) J. Colloid Interface Sci. 26, 62.
20. Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Bradley F. Chmelka, and Galen D. Stucky, (1998) J. Am. Chem. Soc. 120, 6024-6036
21. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Bradley F. Chmelka, and Galen D. Stucky, (1998) Science 279, 548 – 552
22. F. Bloch, (1946) Phys. Rev. 70, 460.
23. W.G. Proctor, F.C Yu, (1950) Phys.Rev. 77, 717
24. W.C. Dickinson, (1950) Phys.Rev. 77, 736-737.
25. N.F. Ramsey, (1950) Phys.Rev. 78, 699-703.
26. J. D. Jackson (1998) Classical Electrodynamics (Wiley, New York)
27. C. P. Slichter (2010) Principle of Magnetic Resonance (Springer, Berling)
28. F. Bloch (1954) Phys.Rev. 94, 496-497
29. W. A. Anderson and J. T. Arnold (1954) Phys. Rev. 94, 497-498.
30. P. Pawlov, (1909) Z. Phys. Chem. 65, 545.
31. R. R. Vanfleet and J. M. Mochel, (1995) Surf. Sci. 341, 40.
32. G. S. Zhdanov, (1977) Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 1004.
33. T. Ben David, Y. Lereah, G. Deutsher, et al., (1995) Phys. Mag. A 71, 1135.
34. Dynamics in Small Confining Systems V, (2001) edited by J. M. Drake, J.Klafter, P. E. Levitz, R. M. Overney, and M. Urbakh (Materials Research Society, Warrendale, PA,).
35. P. Levitz, J. P. Korb, and D. Petit, (2003) Eur. Phys. J. E 12, 29
36. M. Weber, A. Klemm, and R. Kimmich, (2001) Phys. Rev. Lett. 86,4302
37. H. K. Christenson, J. Phys.: Condens. Matter (2001) 13, R95.
38. S. Granick, Science (1991) 253, 1374.
39. J. Schuller, R. Richert, and E. W. Fischer, (1995) Phys. Rev. B 52, 15 232.
40. B. J. Loughnane and J. T. Fourkas, (1998) J. Phys. Chem. B 102, 10 288
41. A. Abragam, (1989) Principles of Nuclear Magnetism (Clarendon Press, Oxford,)
42. J. M. Titman (1977) Phys. Rep. 33 1
43. G. C. Carter, L. H. Bennett and D. J. Kahan (1977) Metallic Shifts in NMR (Oxford: Pergamon).
44. E. M. Dickson, (1969) Phys. Rev. 184 294
45. W. D. Knight and A G Berger, (1959) Ann. Phys. 8 173
46. R. L. Havill, (1967) Proc. Phys. Soc. 92 945
47. C. P. Slichter, (1999) Phil. Mag. B 79 1253
48. E. L. Nagaev, (1992) Phys. Rep. 222 199
49. J. J. Van der Klink and H. B. Brom, (2000) Prog. Nucl. Magn. Reson. Spectrosc. 36, 89
50. P-A Vuissoz, J. P. Ansermet and A. Wieckowski (1999) Phys. Rev. Lett. 83 2457.
51. K. Kimura, (1990) Phys. Rev. B 42 6939
52. M. C. Desjonqueres and D. Spanjaard, (1998) Concepts in Surface Physics (Berlin: Springer)
53. M. J. Williams, P. P. Edwards and D. P. Tunstall (1991) Discuss. Faraday Soc. 92 199
54. K. M. Unruh, T. E. Huber, and C. A. Huber, (1993) Phys. Rev. B 48,9021.
55. M. Zhang et al., (2000) Phys. Rev. B 62, 10548.
56. American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).
57. A. Amirfazli, D. Chatain, and A. W. Neumann, Colloids Surf., A 142, 183 (1998).
58. V. K. Semenchenko, (1981) Surface Phenomena in Metals and Alloys (Pergamon, New York) p. 281.
59. E. Molz, A. P. Y. Wong, M. H. W. Chan, and J. R. Beamish, (1993) Phys. Rev. B 48, 5741.
60. C. R. M. Wronski, Br. (1967) J. Appl. Phys. 18, 1731.
61. C. J. Coombes, (1972) J. Phys. F: Met. Phys. 2, 441.
62. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. M. Penisson, and A. Bourret, (1994) Surf. Sci. 303, 231.
63. J. Frenkel, (1956) The Kinetic Theory of Liquids (Dover, New York,), p. 324.
64. J. Q. Broughton and G. H. Gilmer, (1983) Acta Metall. 31, 845.
65. T. Bachels, H.-J. Güntherodt, and R. Schäfer, (2000) Phys. Rev. Lett. 85,1250.
66. C. E. Bottani, A. Li Bassi, A. Stella, P. Cheyssac, and R. Kofman, (2001) Europhys. Lett. 56, 386.
67. S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, (1996) Phys. Rev. Lett. 77, 99.
68. B. Pluis, D. Frenkel, and J. F. Vanderveen, (1990) Surf. Sci. 239, 282.
69. G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, (1986) Thin Solid Films 144, 297.
70. B. R. Cuenya, W. Keune, W. A. Adeagbo, and P. Entel, (2006) Phys. Rev. B 73, 045311.
71. H. K. Christenson, (2001) J. Phys.: Condens. Matter 13, R95.
72. A. L. Kerlin and W. G. Clark, (1975) Phys. Rev. B 12, 3533.
73. P. S. Hubbard, (1970) J. Chem. Phys. 53, 985.
74. J. Bosse, D. Quitmann, and C. Wetzel, (1983) Phys. Rev. A 28, 2459.
75. D. Michel, B. F. Borisov, E.V. Charnaya, W.-D. Hoffmann, P. G. Plotnikov, and Yu. A. Kumzerov, (1999) Nanostruct. Mater. 12, 515.
76. W. W. Warren, Jr, (1974) Phys. Rev. A 10, 657.
77. H. Konrad, C. Karmonik, J. Weissmüller, H. Gleiter, R. Birringer, and R. Hempelmann, (1997) Physica B 234-236, 173.
78. F.A. Rossini and W.D. Knight, (1969) Phys. Rev. 178, 641.
79. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL,1998).
80. F. A. Rossini et al., (1967) Adv. Phys. 16, 287.
81. W. W. Warren and W. G. Clark, (1966) Bull. Am. Phys. Soc. 11, 916.
82. C. A. Sholl, (1967) Proc. Phys. Soc. London 91, 130.
83. T. Iida and R. I. L. (1993) Guthrie, The Physical Properties of Liquid metals (Clarendon Press, Oxford,).
84. G. Mathiak et al., (1996) J. Non-Cryst. Solids 205-207, 412.
85. R. E. Eckert and H. G. Drickamer, (1952) J. Chem. Phys. 20, 13.
86. H. Konrad et al., (1998) Phys. Rev. B 58, 2142.
87. B.D. Cullity, (1978) Elements of X-Ray Diffraction, 2nd ed., Addison–Wesley Publishing Company, Reading, MA,.
88. Ferroelectric Ceramics, edited by N. Setter and E. L. Colla (Birkhause, Basel, 1993).
89. I. Yamashita, H. Kawaji, T. Atake, Y. Kuroiwa, and A. Sawada, (2003) Phys. Rev. B 68, 092104; R. Böttcher, C. Klimm, D. Michel, H.-C. Semmelhack, G. Völkel, H.-J. Gläsel, and E. Hartmann, (2000) Phys. Rev. B 62, 2085.
90. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, (2004) Phys. Rev. B 70, 024107
91. T. Yu, Z. X. Shen, W. S. Toh, J. M. Xue, and J. Wang, (2003) J. Appl. Phys. 94, 618.
92. Y. Drezner and S. Berger, (2003) J. Appl. Phys. 94, 6774
93. B. Jiang, J. L. Peng, L. A. Bursill, and W. L. Zhong, (2000) J. Appl. Phys. 87, 3462.
94. S. Kohiki, S. Takada, A. Shimizu, K. Yamada, H. Higashijima, and M. Mitome, (2000).J. Appl. Phys. 87, 474
95. Yu. A. Kumzerov and S. B. Vakhrushev, “Nanostructures within porous materials,” in Encyclopedia of Nanoscience and Nanotechnology, edited. by H. S. Nalwa (American Scientific Publishers, Stevenson Ranch, California, 2003).
96. J. Warnock, D. D. Awschalom, and M. W. Shafer, (1986) Phys. Rev. Lett. 57, 1753.
97. E. V. Charnaya, C. Tien, K. J. Lin, and Yu. A. Kumzerov, (1998) Phys. Rev. B 58, 11089.
98. Z. W. Liu, Y. Bando, M. Mitome, and J. H. Zhan, (2004) Phys. Rev. Lett. 93, 095504.
99. Tien, C. S. Wur, K. J. Lin, E. V. Charnaya, and Yu. A. Kumzerov, (2000) Phys. Rev. B 61, 14833.
100. M. Larson, N. Mulders, and G. Ahlers, (1992) Phys. Rev. Lett. 68, 3896.
101. J. E. Baumgardner and D. D. Osheroff, (2004) Phys. Rev. Lett. 93, 155301.
102. V. Krakoviack, Phys. Rev. Lett. (2005) 94, 065703.
103. J. Swenson, (2004) J. Phys.: Condens. Matter 16, S5317.
104. R. Valiullin and I. Furo, (2002) Phys. Rev. E 66, 031508.
105. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 2001).
106. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck (1992) Nature 359 710.
107. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuma and O. Terasaki (2000) J. Am. Chem. Soc. 122 10712.
108. W. Böhlmann and D. Michel (2001) Stud. Surf. Sci. Catal.135 202.
109. Y. Shiozaki, K. Shimizu and R. Nozaki (2001) Ferroelectrics 261 239.
110. X. Solans, C. Gonzalez-Silgo and C. Ruiz-P´erez (1997) J. Solid State Chem. 131 350.
111. N. C. Miller and P. A. Casabella (1966) Phys. Rev. 152 228.
112. M. E. Fitzgerald and P. A. Casabella (1973) Phys. Rev. B 7 2193.
113. M. E. Fitzgerald and P. A. Casabella (1970) Phys. Rev. B 2 1350.
114. R. Blinc, J. Petkovšek and I. Zupančič (1964) Phys. Rev. 136 A1684.
115. N. C. Miller and P. A. Casabella (1966) Phys. Rev. 152 228.
116. D. Massiot, F. Fayon, M. Caprou, I. King, S. Le Calve, B. Alonso, J-D. Durand, B. Bujoli, Z. Gan and G. Hoatson (2002) Magn. Reson. Chem. 40 70.
117. J. K. Jung, O. H. Han, and S. H. Choh, (1999) Solid State Commun. 110, 547.
118. G. Bonera, F. Borsa and A. Rigamonti, (1969) Phys. Lett. A 29 88, 28
119. J. K. Jung, O. H. Han, and S. H. Choh, (1999) Solid State Commun. 110, 547.
120. N. Okubo, M. Igarashi, and R. Yoshizaki, Z. Naturforsch., (1996) A: Phys. Sci. 51A, 277.
121. G. Bonera, F. Borsa, and A. Rigamonti, (1970) Phys. Rev. B 2, 2784.
122. T. Gohda, M. Ichikawa, T. Gustafsson, and I. Olovsson, (2000) Phys. Rev. B 63, 014101.
123. L. Pandey and D. G. Hughes, (1992) J. Phys.: Condens. Matter 4, 6889.
124. A. Avogadro, G. Bonera, and A. Rigamonti, (1975) J. Magn. Reson. (1969-1992) 20, 399.
125. G. Bonera, F. Borsa and A. Rigamonti (1969) Phys. Lett. A 29 88.
126. T. Apih, J. Dolinšek, B. Topič, R. Blinc and L. A. Shuvalov, (1990) Phys. Rev. B 41 7227.
127. R. Blinc and S. Zimer, (1968) Phys. Rev. Lett. 21 1004.
128. J. Kulda, J. Hlinka, S. Kamba and J. Petzelt (2000) ILL: Annual Report www.ill.fr/AR-00/p-48.htm,
129. B. Žekš, G. C. Shukla and R. Blinc (1971) Phys. Rev. B 3 2306
130. E. V. Charnaya and I. Rakhimov (1990) Ferroelectrics 112 45.
131. W. L. Zhong, Y. G. Wang, P. L. Zhang and B. D. Qu (1994) Phys. Rev. B 50 698.
132. C. L. Wang, Y. Xin, X. S. Wang and W. L. Zhong (2000) Phys. Rev.B 62 11423.
133. S. Sen and J. F. Stebbins, (1997) Phys. Rev. B 55, 3512.
134. T. Tokuhiro, (1988) J. Magn. Reson. (1969-1992) 76, 22.
135. S. H. Choh, J. Lee, and K. H. Kang, (1981) Ferroelectrics 36, 297.
136. V. Lyahovitskaya, Y. Feldman, I. Zon, E. Wachtel, K. Gartsman, A. K. Tagantsev, and I. Lubomirsky, (2005) Phys. Rev. B 71, 094209.
137. S. Sen and J. F. Stebbins, (1997) Phys. Rev. B 55, 3512.
138. P. Porion, M. P. Faugere, E. Lecolier, B. Gherardi, and A. Delville, (1998) J. Phys. Chem. 102, 3477.
139. Y. Inagaki, H. Maekawa, T. Yokokawa, and S. Shimokawa, (1993) Phys. Rev. B 47, 674.