簡易檢索 / 詳目顯示

研究生: 李民楷
Lee, Min Kai
論文名稱: 利用核磁共振方法研究奈米材料
NMR studies of nanoconfined materials
指導教授: 田聰
Tien, Cheng
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 140
中文關鍵詞: 核磁共振奈米多孔材料
外文關鍵詞: NMR, nanoconfined materials, metal, ferroelectrics, atomic mobility, phase transition
相關次數: 點閱:70下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要的研究著墨於金屬與鐵電材料在奈米多孔材料中,其物理性質相對於塊材(巨觀尺度下)的差異性。就液態金屬於奈米多孔材料中而言,相較於其塊材的物理性質 我們觀察到其奈特位移(Knight shift)降低,原子的遷移率減低,熔點與凝固點下降且顯現清楚的熱滯現象。更近一步的研究顯示,對於奈米多孔材料中的液態鎵與銦而言,原子的遷移率減低證實了自旋鬆弛的加速是由於四偶極矩作用的貢獻增加所致。對於中孔洞材料中的鐵電物質而言,我們的核磁共振研究顯示了孔洞中的鐵電物質有著不同的結構且分別有著差異相當大的自旋鬆弛速率。自旋鬆弛速率較慢的結構有著類似於塊材的行為,但是鐵電相變的溫度區間變得較寬且鐵電相變的溫度變得較低。而對於中孔洞材料中的NaNO2之自旋鬆弛速率較快的結構而計算出的原子遷移率得知,其行為較符合於某種融熔態或準融熔態所表現的行為。

    In this thesis, we report the influence of physical property of metals and ferroelectrics under nanoconfinement. For confined liquid metals, we observed the reduction of Knight shift, melting and freezing phase transition, and atomic mobility comparing to bulk liquid metals. In addition, the slowdown of atomic mobility manifest as acceleration of nuclear spin relaxation for confined liquid gallium and indium caused by enhancement of quadrupole interaction. For confined ferroelectrics, our NMR studies show that there are complex structures in confined materials which correspond to different nuclear relaxation rates. The ferroelectric phase transition become broader and is shifted to lower temperature for the bulk-like component with slower relaxation rate. The faster component in confined sodium nitrite show its behavior corresponding to some sort of melted or premelted state in accordance of our calculation of atomic mobility.

    1 History background, 1 1.1 Brief history of NMR, 1 1.2 A short review of porous media, 2 1.2.1 Porous/vycor glass, 3 1.2.2 Artificial opal, 3 1.2.3 MCM-41 and SBA-15, 4 2 Basic knowledge of NMR, 6 2.1 Nuclear magnetic moment, energy splitting and magnetic resonance, 6 2.2 Spin precession, 9 2.3 The rotating frame, 12 2.4 Bloch equation and relaxation time, 15 2.5 Signal intensity, 18 2.6 NMR spectrometer, 20 2.7 Pulse sequences, 23 2.7.1 Single pulse sequence, 23 2.7.2 Inversion recovery sequence, 24 2.8 Nuclear spin interactions, 26 2.8.1 The Chemical Shift, 26 2.8.1.1 Introduction, 26 2.8.1.2 The origin of chemical shift, 27 2.8.1.3 The chemical shielding Hamiltonian, 27 2.8.2 Dipolar interaction, 32 2.8.2.1 Homonuclear dipolar coupling, 34 2.8.2.2 Heteronuclear dipolar coupling, 38 2.8.3 Quadrupole interaction, 41 2.8.3.1 The Quadrupole Hamiltonian, 42 2.9 Magic Angle Spinning, 50 3 Metals under nanoconfinement, 54 3.1 Brief insight, experiment and samples, 54 3.2 Knight shift for different liquid metals under nano-confinement, 57 3.3 Melting and freezing phase transition in confined metals, 66 3.4 Atomic mobility in different confined metals, 76 3.5 Additional X-ray studies of structures in nanoconfined gallium, 93 4 Ferroelectrics under nanocomfinement, 96 4.1 Brief insight, experiment and samples, 96 4.2 Distinctive structures with different relaxation time constant in confined ferroelectrics, 100 4.3 Atomic mobility in confined sodium nitrite, 118 Reference, 121 Appendix, 129 A. The classical treatment of electron orbital motion on atomic orbit in a magnetic field, 129 B. Expression of dipolar Hamiltonian in spherical coordinates, raising and lowering spin operator, 130 C. The calculation of quadrupole Hamiltonian, 134

    1. Zeitschrift für Physik 9: 353–355.
    2. I.I. Rabi, (1937) Phys.Rev. 51, 652-654.
    3. I.I. Rabi, J.R. Zacharias, S. Millman, P. P. Kusch, (1938) Phys.Rev. 53, 318.
    4. I.I. Rabi, S. Millman, P. P. Kusch, J.R. Zacharias, (1939) Phys.Rev. 55, 526-535.
    5. E.M. Purcell, H.C. Torrey, R.V. Pound, (1946) Phys.Rev. 69, 37-38.
    6. F.Bloch, W.W. Hansen, M.E. Packard, (1946) Phys.Rev. 69, 680.
    7. E.L. Hahn, (1950) Phys.Rev. 80, 580-594.
    8. R. R. Ernst, W. A. Anderson, (1966) Rev. Sri. Instrum. , 37, 93.
    9. R. R. Ernst, (1966) Adv. Mugn. Reson., 2, 1.
    10. P. C. Lauterbur (1973) Nature 242, 190 - 191
    11. J. Rouquerol et al., (1994) Pure & Appl. Chem, 66 1739-1758
    12. A. F. Cronsdedt (1756) Akad. Handl. Stockholm., 18, 120.{ Source: Flanigen, E. M, Introduction to Zeolite Science and Practice. Bekkum, H. V.; Flanigen, E. M.; Jacobs.; Jansen, J. C (Eds), 2edition, Elsevier Science, Amsterdam (2001). }
    13. J. S. Beck; J. C. Vartuli; W. J. Roth; M. E. Leonowicz; C. T. Kresge; K. D. Schmitt; C. T-W. Chu; D. H. Olson; E. W. Sheppard; S. B. McCullen; J. B. Higgins; and J. L. Schlenkert. (1992) J. Am. Chem. Soc. 114 10834–10843.
    14. W.E.S. Turner, F. Winks Journal of the Society of Glass Technology (1926) 102 74
    15. Pawel Pieranski, (1983) Contemp. Phys., 24, 25.
    16. R. C. Williams, & K. M. Smith, (1957) Nature 179, 119.
    17. J. V. Sanders (1964) Nature 204, 1151
    18. P. J. Darragh, A. J Gaskin, B. C. Terrell, & J. V. Sanders (1966) Nature 209, 13.
    19. W. Stöber, A. Fink & E. Bohn (1968) J. Colloid Interface Sci. 26, 62.
    20. Dongyuan Zhao, Qisheng Huo, Jianglin Feng, Bradley F. Chmelka, and Galen D. Stucky, (1998) J. Am. Chem. Soc. 120, 6024-6036
    21. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Bradley F. Chmelka, and Galen D. Stucky, (1998) Science 279, 548 – 552
    22. F. Bloch, (1946) Phys. Rev. 70, 460.
    23. W.G. Proctor, F.C Yu, (1950) Phys.Rev. 77, 717
    24. W.C. Dickinson, (1950) Phys.Rev. 77, 736-737.
    25. N.F. Ramsey, (1950) Phys.Rev. 78, 699-703.
    26. J. D. Jackson (1998) Classical Electrodynamics (Wiley, New York)
    27. C. P. Slichter (2010) Principle of Magnetic Resonance (Springer, Berling)
    28. F. Bloch (1954) Phys.Rev. 94, 496-497
    29. W. A. Anderson and J. T. Arnold (1954) Phys. Rev. 94, 497-498.
    30. P. Pawlov, (1909) Z. Phys. Chem. 65, 545.
    31. R. R. Vanfleet and J. M. Mochel, (1995) Surf. Sci. 341, 40.
    32. G. S. Zhdanov, (1977) Izv. Akad. Nauk SSSR, Ser. Fiz. 41, 1004.
    33. T. Ben David, Y. Lereah, G. Deutsher, et al., (1995) Phys. Mag. A 71, 1135.
    34. Dynamics in Small Confining Systems V, (2001) edited by J. M. Drake, J.Klafter, P. E. Levitz, R. M. Overney, and M. Urbakh (Materials Research Society, Warrendale, PA,).
    35. P. Levitz, J. P. Korb, and D. Petit, (2003) Eur. Phys. J. E 12, 29
    36. M. Weber, A. Klemm, and R. Kimmich, (2001) Phys. Rev. Lett. 86,4302
    37. H. K. Christenson, J. Phys.: Condens. Matter (2001) 13, R95.
    38. S. Granick, Science (1991) 253, 1374.
    39. J. Schuller, R. Richert, and E. W. Fischer, (1995) Phys. Rev. B 52, 15 232.
    40. B. J. Loughnane and J. T. Fourkas, (1998) J. Phys. Chem. B 102, 10 288
    41. A. Abragam, (1989) Principles of Nuclear Magnetism (Clarendon Press, Oxford,)
    42. J. M. Titman (1977) Phys. Rep. 33 1
    43. G. C. Carter, L. H. Bennett and D. J. Kahan (1977) Metallic Shifts in NMR (Oxford: Pergamon).
    44. E. M. Dickson, (1969) Phys. Rev. 184 294
    45. W. D. Knight and A G Berger, (1959) Ann. Phys. 8 173
    46. R. L. Havill, (1967) Proc. Phys. Soc. 92 945
    47. C. P. Slichter, (1999) Phil. Mag. B 79 1253
    48. E. L. Nagaev, (1992) Phys. Rep. 222 199
    49. J. J. Van der Klink and H. B. Brom, (2000) Prog. Nucl. Magn. Reson. Spectrosc. 36, 89
    50. P-A Vuissoz, J. P. Ansermet and A. Wieckowski (1999) Phys. Rev. Lett. 83 2457.
    51. K. Kimura, (1990) Phys. Rev. B 42 6939
    52. M. C. Desjonqueres and D. Spanjaard, (1998) Concepts in Surface Physics (Berlin: Springer)
    53. M. J. Williams, P. P. Edwards and D. P. Tunstall (1991) Discuss. Faraday Soc. 92 199
    54. K. M. Unruh, T. E. Huber, and C. A. Huber, (1993) Phys. Rev. B 48,9021.
    55. M. Zhang et al., (2000) Phys. Rev. B 62, 10548.
    56. American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972).
    57. A. Amirfazli, D. Chatain, and A. W. Neumann, Colloids Surf., A 142, 183 (1998).
    58. V. K. Semenchenko, (1981) Surface Phenomena in Metals and Alloys (Pergamon, New York) p. 281.
    59. E. Molz, A. P. Y. Wong, M. H. W. Chan, and J. R. Beamish, (1993) Phys. Rev. B 48, 5741.
    60. C. R. M. Wronski, Br. (1967) J. Appl. Phys. 18, 1731.
    61. C. J. Coombes, (1972) J. Phys. F: Met. Phys. 2, 441.
    62. R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J. M. Penisson, and A. Bourret, (1994) Surf. Sci. 303, 231.
    63. J. Frenkel, (1956) The Kinetic Theory of Liquids (Dover, New York,), p. 324.
    64. J. Q. Broughton and G. H. Gilmer, (1983) Acta Metall. 31, 845.
    65. T. Bachels, H.-J. Güntherodt, and R. Schäfer, (2000) Phys. Rev. Lett. 85,1250.
    66. C. E. Bottani, A. Li Bassi, A. Stella, P. Cheyssac, and R. Kofman, (2001) Europhys. Lett. 56, 386.
    67. S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, (1996) Phys. Rev. Lett. 77, 99.
    68. B. Pluis, D. Frenkel, and J. F. Vanderveen, (1990) Surf. Sci. 239, 282.
    69. G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, (1986) Thin Solid Films 144, 297.
    70. B. R. Cuenya, W. Keune, W. A. Adeagbo, and P. Entel, (2006) Phys. Rev. B 73, 045311.
    71. H. K. Christenson, (2001) J. Phys.: Condens. Matter 13, R95.
    72. A. L. Kerlin and W. G. Clark, (1975) Phys. Rev. B 12, 3533.
    73. P. S. Hubbard, (1970) J. Chem. Phys. 53, 985.
    74. J. Bosse, D. Quitmann, and C. Wetzel, (1983) Phys. Rev. A 28, 2459.
    75. D. Michel, B. F. Borisov, E.V. Charnaya, W.-D. Hoffmann, P. G. Plotnikov, and Yu. A. Kumzerov, (1999) Nanostruct. Mater. 12, 515.
    76. W. W. Warren, Jr, (1974) Phys. Rev. A 10, 657.
    77. H. Konrad, C. Karmonik, J. Weissmüller, H. Gleiter, R. Birringer, and R. Hempelmann, (1997) Physica B 234-236, 173.
    78. F.A. Rossini and W.D. Knight, (1969) Phys. Rev. 178, 641.
    79. CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL,1998).
    80. F. A. Rossini et al., (1967) Adv. Phys. 16, 287.
    81. W. W. Warren and W. G. Clark, (1966) Bull. Am. Phys. Soc. 11, 916.
    82. C. A. Sholl, (1967) Proc. Phys. Soc. London 91, 130.
    83. T. Iida and R. I. L. (1993) Guthrie, The Physical Properties of Liquid metals (Clarendon Press, Oxford,).
    84. G. Mathiak et al., (1996) J. Non-Cryst. Solids 205-207, 412.
    85. R. E. Eckert and H. G. Drickamer, (1952) J. Chem. Phys. 20, 13.
    86. H. Konrad et al., (1998) Phys. Rev. B 58, 2142.
    87. B.D. Cullity, (1978) Elements of X-Ray Diffraction, 2nd ed., Addison–Wesley Publishing Company, Reading, MA,.
    88. Ferroelectric Ceramics, edited by N. Setter and E. L. Colla (Birkhause, Basel, 1993).
    89. I. Yamashita, H. Kawaji, T. Atake, Y. Kuroiwa, and A. Sawada, (2003) Phys. Rev. B 68, 092104; R. Böttcher, C. Klimm, D. Michel, H.-C. Semmelhack, G. Völkel, H.-J. Gläsel, and E. Hartmann, (2000) Phys. Rev. B 62, 2085.
    90. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, (2004) Phys. Rev. B 70, 024107
    91. T. Yu, Z. X. Shen, W. S. Toh, J. M. Xue, and J. Wang, (2003) J. Appl. Phys. 94, 618.
    92. Y. Drezner and S. Berger, (2003) J. Appl. Phys. 94, 6774
    93. B. Jiang, J. L. Peng, L. A. Bursill, and W. L. Zhong, (2000) J. Appl. Phys. 87, 3462.
    94. S. Kohiki, S. Takada, A. Shimizu, K. Yamada, H. Higashijima, and M. Mitome, (2000).J. Appl. Phys. 87, 474
    95. Yu. A. Kumzerov and S. B. Vakhrushev, “Nanostructures within porous materials,” in Encyclopedia of Nanoscience and Nanotechnology, edited. by H. S. Nalwa (American Scientific Publishers, Stevenson Ranch, California, 2003).
    96. J. Warnock, D. D. Awschalom, and M. W. Shafer, (1986) Phys. Rev. Lett. 57, 1753.
    97. E. V. Charnaya, C. Tien, K. J. Lin, and Yu. A. Kumzerov, (1998) Phys. Rev. B 58, 11089.
    98. Z. W. Liu, Y. Bando, M. Mitome, and J. H. Zhan, (2004) Phys. Rev. Lett. 93, 095504.
    99. Tien, C. S. Wur, K. J. Lin, E. V. Charnaya, and Yu. A. Kumzerov, (2000) Phys. Rev. B 61, 14833.
    100. M. Larson, N. Mulders, and G. Ahlers, (1992) Phys. Rev. Lett. 68, 3896.
    101. J. E. Baumgardner and D. D. Osheroff, (2004) Phys. Rev. Lett. 93, 155301.
    102. V. Krakoviack, Phys. Rev. Lett. (2005) 94, 065703.
    103. J. Swenson, (2004) J. Phys.: Condens. Matter 16, S5317.
    104. R. Valiullin and I. Furo, (2002) Phys. Rev. E 66, 031508.
    105. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 2001).
    106. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck (1992) Nature 359 710.
    107. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuma and O. Terasaki (2000) J. Am. Chem. Soc. 122 10712.
    108. W. Böhlmann and D. Michel (2001) Stud. Surf. Sci. Catal.135 202.
    109. Y. Shiozaki, K. Shimizu and R. Nozaki (2001) Ferroelectrics 261 239.
    110. X. Solans, C. Gonzalez-Silgo and C. Ruiz-P´erez (1997) J. Solid State Chem. 131 350.
    111. N. C. Miller and P. A. Casabella (1966) Phys. Rev. 152 228.
    112. M. E. Fitzgerald and P. A. Casabella (1973) Phys. Rev. B 7 2193.
    113. M. E. Fitzgerald and P. A. Casabella (1970) Phys. Rev. B 2 1350.
    114. R. Blinc, J. Petkovšek and I. Zupančič (1964) Phys. Rev. 136 A1684.
    115. N. C. Miller and P. A. Casabella (1966) Phys. Rev. 152 228.
    116. D. Massiot, F. Fayon, M. Caprou, I. King, S. Le Calve, B. Alonso, J-D. Durand, B. Bujoli, Z. Gan and G. Hoatson (2002) Magn. Reson. Chem. 40 70.
    117. J. K. Jung, O. H. Han, and S. H. Choh, (1999) Solid State Commun. 110, 547.
    118. G. Bonera, F. Borsa and A. Rigamonti, (1969) Phys. Lett. A 29 88, 28
    119. J. K. Jung, O. H. Han, and S. H. Choh, (1999) Solid State Commun. 110, 547.
    120. N. Okubo, M. Igarashi, and R. Yoshizaki, Z. Naturforsch., (1996) A: Phys. Sci. 51A, 277.
    121. G. Bonera, F. Borsa, and A. Rigamonti, (1970) Phys. Rev. B 2, 2784.
    122. T. Gohda, M. Ichikawa, T. Gustafsson, and I. Olovsson, (2000) Phys. Rev. B 63, 014101.
    123. L. Pandey and D. G. Hughes, (1992) J. Phys.: Condens. Matter 4, 6889.
    124. A. Avogadro, G. Bonera, and A. Rigamonti, (1975) J. Magn. Reson. (1969-1992) 20, 399.
    125. G. Bonera, F. Borsa and A. Rigamonti (1969) Phys. Lett. A 29 88.
    126. T. Apih, J. Dolinšek, B. Topič, R. Blinc and L. A. Shuvalov, (1990) Phys. Rev. B 41 7227.
    127. R. Blinc and S. Zimer, (1968) Phys. Rev. Lett. 21 1004.
    128. J. Kulda, J. Hlinka, S. Kamba and J. Petzelt (2000) ILL: Annual Report www.ill.fr/AR-00/p-48.htm,
    129. B. Žekš, G. C. Shukla and R. Blinc (1971) Phys. Rev. B 3 2306
    130. E. V. Charnaya and I. Rakhimov (1990) Ferroelectrics 112 45.
    131. W. L. Zhong, Y. G. Wang, P. L. Zhang and B. D. Qu (1994) Phys. Rev. B 50 698.
    132. C. L. Wang, Y. Xin, X. S. Wang and W. L. Zhong (2000) Phys. Rev.B 62 11423.
    133. S. Sen and J. F. Stebbins, (1997) Phys. Rev. B 55, 3512.
    134. T. Tokuhiro, (1988) J. Magn. Reson. (1969-1992) 76, 22.
    135. S. H. Choh, J. Lee, and K. H. Kang, (1981) Ferroelectrics 36, 297.
    136. V. Lyahovitskaya, Y. Feldman, I. Zon, E. Wachtel, K. Gartsman, A. K. Tagantsev, and I. Lubomirsky, (2005) Phys. Rev. B 71, 094209.
    137. S. Sen and J. F. Stebbins, (1997) Phys. Rev. B 55, 3512.
    138. P. Porion, M. P. Faugere, E. Lecolier, B. Gherardi, and A. Delville, (1998) J. Phys. Chem. 102, 3477.
    139. Y. Inagaki, H. Maekawa, T. Yokokawa, and S. Shimokawa, (1993) Phys. Rev. B 47, 674.

    下載圖示 校內:2013-08-17公開
    校外:立即公開
    QR CODE