簡易檢索 / 詳目顯示

研究生: 王世忠
Wang, Shih-Chung
論文名稱: 非破壞性檢測分析花蓮崇德遺址出土古玻璃珠
Non-destructive Testing Analysis the Ancient Glass Beads Unearthed from the Chungde Site, Hualien
指導教授: 申永輝
Shen, Yun-Hwei
劉瑩三
Liou, Ying-San
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 顯微拉曼光譜譜儀微區X光螢光分析儀拉曼聚合指數印度-太平洋玻璃珠
外文關鍵詞: Micro-Raman Spectroscopy, Micro-XRF Spectrometer, the Raman Index of Polymerization, Indo-Pacific Beads
相關次數: 點閱:169下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 古玻璃珠(透明度較低或不透明的玻璃珠或稱琉璃珠,透明者稱玻璃珠,本研究分析的標本屬史前時代,統稱古玻璃珠),由於其體積小且容易攜帶,外表圓潤、光澤亮麗、色彩豐富又可以經由排列組合的方式變化樣式,因此常做為裝飾品、宗教儀式用品、陪葬品之用,同時不同顏色、形制的玻璃珠,可以作為社會階層、財富象徵、性別區別等社會文化的意義。古玻璃珠的化學成分會隨著原料區域、製作工坊地點、添加物質與時代產生變化,就玻璃珠顏色與化學成分而言,可能影響的因素包括原料、助融劑、著色劑、乳濁劑與穩定劑等。
    由於史前文物具有珍貴性與稀有性,對史前文物使用非破壞的檢測方式變得越發重要,加上科學儀器在非破壞性的檢測技術上有大幅的進步。因此,本研究使用顯微拉曼光譜儀、微區X光螢光分析儀(μ-XRF)對花蓮縣崇德遺址出土的10件古玻璃珠進行分析,從顯微拉曼光譜儀分析結果顯示崇德玻璃珠的礦物成分組成多為玻璃與鈣長石玻璃,此外,分析並計算標本的拉曼光譜圖所得到的拉曼聚合指數(Ip, the Raman Index of Polymerization),顯示其燒結溫度大約在1000~1400℃左右而非傳統認為的800℃~1000℃的古鹼性玻璃的範圍,可能為高鋁質鈉鈣玻璃系統的特性。
    利用最大伸長振動峰值波數(νmax Si-O Stretching)與最大彎曲振動峰值波數(δmax Si-O Bending)可與化學組成成分相對應,本研究標本雖為印度-太平洋玻璃珠的化學成分特徵,但與前人利用拉曼光譜分析所歸類納的印度-太平洋玻璃珠有明顯差距,可能為作者收集的分析資料,多為分析瓷器的實驗數據,瓷器的製作過程與燒製溫度雖與玻璃珠類似但仍有所不同,需重新建立臺灣出土的玻璃珠類似化學成分與拉曼光譜關連性的數據。
    以微區X光射線螢光光譜儀(μ-XRF)對古玻璃珠進行化學成分分析,大致獲得古玻璃珠可能使用的添加劑的成分種類,助融劑:鈉、鉀;穩定劑:鈣、鎂,著色劑:亞鐵離子、亞銅離子、銅離子;乳濁劑則無。將標本中的化學成分:氧化鈉(Na2O)、氧化鉀(K2O)、氧化鈣(CaO)、氧化鎂(MgO)與氧化鋁(Al2O3)以三端元相圖(Ternary Phase Diagram)分析,分別以 CaO –(MgO+K2O)– Na2O,K2O – Al2O3 – CaO,CaO – K2O – Na2O為端成分做圖,對古玻璃珠進行分類:依據CaO – K2O – Na2O與K2O – Al2O3 – CaO的相圖顯示,本研究的玻璃珠主要為高鋁質鈉鈣玻璃系統,推論屬於印度-太平洋玻璃珠,但其中二個玻璃珠與十三行第一類玻璃珠成分常類似,為低鋁質鈉鈣玻璃系統;此低鋁質鈉鈣玻璃系統玻璃珠根據其年代、地域分布與考古遺址的資料顯示,極可能為台灣地區加工生產的玻璃珠。
    關鍵詞:顯微拉曼光譜譜儀、微區X光螢光分析儀、拉曼聚合指數、印度-太平洋玻璃珠

    Non-destructive Testing Analysis the Ancient Glass Beads
    Unearthed from the Chungde Site, Hualien

    Shih-Chung Wang
    Yun-Hwei Shen
    Department of Resources Engineering & College of Engineering

    SUMMARY
    The ancient glass beads with variant colors, shapes, and stylistics possess socio-cultural significance, and have been an important approach to understand the topics for the origin and provenance, manufacturing techniques, and exchange/trade routes.The chemical composition of ancient glass beads as the source area, place of production workshop, add material changes with the times, glass bead color and chemical composition, and may be affected by factors, including raw materials, fluxing agents, colorants, opacifiers and stabilizers.

    Because artifacts have the preciousness and rarity, using non-destructive detection method for artifacts become more important, along with scientific instruments in non-destructive testing technology in more significant progress. In this research, micro-Raman spectroscopy and micro X-ray fluorescent spectrometer (μ-XRF) are used in combination to examine ten ancient glass beads excavated from Chungde site, Hualien, Taiwan, dated back to 1500-800BP, to unravel the mineralogical and chemical compositions. From micro Raman spectrometer analysis results displaying the most of Chungde site glass beads are glass and anorthite glass, analysis and calculation specimens of Raman spectrogram, the results of Ip (the Raman Index of Polymerization) indicate that the sintering temperature is about 1000~1400°C rather than the ancient alkaline glass range, which is about 800 ~1000°C, because the ancient glass beads are classified high aluminum of soda-lime glass system.

    Micro X-ray fluorescence spectrometer (μ-XRF) for ancient glass beads of chemical composition analysis, generally get the kind of ancient glass beads ingredient may use additives which like fluxing agents: Na, K; stabilizers: Ca, Mg; colorants: Fe2+, Cu+, Cu2+; opacifiers: none. The chemical composition of samples, Na2O, K2O, CaO, MgO and Al2O3, were analyzed by a ternary phase diagram , respectively with CaO - (MgO + K2O) - Na2O, K2O - Al2O3 - CaO, CaO - K2O - Na2O phase diagrams which were used for classification of ancient glass beads. According CaO - K2O - Na2O and K2O - Al2O3 - CaO of phase diagrams displayed, the research of glass beads mostly are high aluminum soda-lime-silicate system, which belong to Indo - Pacific glass beads, but the only two of samples are low aluminum soda-lime-silicate system. These low aluminum soda-lime-silicate system glass beads, according to their era, and geographical distribution and archaeological site of data displayed, are mostly like glass beads which are manufactured from Taiwan.

    Key words: Micro-Raman Spectroscopy, Micro-XRF Spectrometer, the Raman Index of Polymerization, Indo-Pacific Beads

    INTRODUCTION

    Ancient glass beads are small in size and easy to carry, rounded appearance, bright luster, rich colors and can be arranged through a combination of changes in style and used as ornaments, ritual items, funerary purposes, and glass beads in different shapes and colors, can be used as a social class, a symbol of wealth, sex and other social and cultural significance. The chemical composition of ancient glass beads as the source area, place of production workshop, add material changes with the times, glass bead color and chemical composition, and may be affected by factors, including raw materials, fluxing agents, colorants, opacifiers and stabilizers.

    MATERIALS AND METHODS

    Due to prehistoric heritage has precious and rare characteristics, so this research using micro Raman spectroscopy, and micro X-ray fluorescent spectrometer (μ-XRF) on Hualien County Chongde site unearthed of 10 pieces ancient glass beads for analysis.

    RESULTS AND DISCUSSION

    The 10 pieces specimens analysis of results finishing into table 1, spectrum identification proceeds of mineral to glass, and anorthite glass mainly, other is has: quartz, albite, dolomite, ankerite and amazonite, chemical components analysis of results displayed, roughly can will 8 pieces glass beads presumption soda-lime-silicate system, TP1-004 may for a lkali-silicate system, with the exception of TP1-054 and TP2-002, the remaining samples without lead and alumina (Al2O3) content is high, presumably for India-Pacific glass beads, TP1-038 is possible for soda-lead-silicate system but it can have a higher alumina content, also belong to India-Pacific glass beads.

    Making glass by fluxing agents are Na and K ( TP1-038 for Na, K and Pb ), stabilizers to Ca mainly, only 6 pieces have another contains Mg, and without any opacifiers , part of ancient glass beads with orange color, according to its chemical elements analysis most contains Cu, speculated that colorants are from cuprite (Cu2O) like copper ion (Cu+), but Raman spectrum does not display spectrum diagram of this mineral, speculated that Cu+ may be totally dissolving in glaze, that cannot be detected by Raman spectrometer, TP1-051’s color is blue-green and colorant is Cu2+, and it is different from the colorants are used by Cu+, TP-054 and TP2-002 for long tube blue glass beads, speculated that their colorants are Fe2+.

    Table1. The result of Raman spectrum and μ-XRF chemical composition
    NO. MINERAL COMPOSITION GLASS SYSTEM FLUXING AGENTS STABILIZERS COLORANTS
    TP1-003 glass、anorthite glass Soda-lime systems Na, K Ca Cu+
    TP1-004 glass、anorthite glass、quartz, ankerite Alkali-silicate system Na, K Ca, Mg Unknown
    TP1-017 glass、anorthite glass、quartz Soda-lime systems Na, K Ca, Mg Cu+
    TP1-024 glass、anorthite glass Soda-lime systems Na, K Ca Cu+
    TP1-036 glass、anorthite glass、quartz, zircon, amazonite Soda-lime systems Na, K Ca, Mg Cu+
    TP1-037 glass、anorthite glass、quartz、albite、dolomite Soda-lime systems Na, K Ca, Mg Cu+
    TP1-038 glass、anorthite glass、quartz、albite、dolomite Soda-lead-silicate system Na, K, Pb Ca Cu+
    TP1-051 glass、anorthite glass Soda-lime systems Na, K Ca Cu2+
    TP1-054 glass Soda-lime systems Na, K Ca, Mg Fe2+
    TP2-002 glass Soda-lime systems Na, K Ca, Mg Fe2+

    From micro Raman spectroscopy analysis results displayed Chongde glass beads of mineral components composition more for glass and anorthite glass, also, analysis and calculation specimens of Raman spectrogram by get of the Raman index of polymerization (Ip). To display their sintering temperature of about 1000~1400℃, not the traditional alkaline glass systems 800~1000℃, may the effects of soda-lime glass systems containing alumina.

    The result of specimens in the of chemical components: using Na2O, K2O, CaO, MgO and Al2O3 as end member which were analyzed by ternary phase diagram, respectively to CaO – (MgO+K2O) – Na2O,K2O – Al2O3 – CaO, CaO – K2O – Na2O phase diagrams which were used for classification of ancient glass beads. According to CaO – K2O – Na2O and K2O – Al2O3 – CaO of phase diagram displayed, this research of glass beads main for high aluminum soda-lime glass system, the inference that belongs to India-Pacific glass beads, but one of two glass beads for low-aluminum soda-lime glass systems.

    CONCLUSION

    Due to archaeological finds of rare and precious, non-destructive testing analysis on unearthed of analysis work increasingly important, this for Hualien Chongde site ancient glass beads, used non-destructive testing analysis method, on its mineral, and chemical composition of detection, and according to its characteristics analysis and discussion, determines ancient glass belongs to what glass system, how can for its making technology, and trade way and culture exchange will be in the future discussion.

    (1) This research application Raman spectroscopy on ancient glass beads of non-destructive analysis, get Chongde glass beads of mineral components composition more for glass and anorthite glass, but other additives (as fluxing agents, and colorants, and opacifiers) of components and species does not in this research which has obviously of spectrum pattern, that may in sintering process has completely of dissolving in glaze or glass that cannot be detected.

    (2) From micro Raman spectroscopy analysis results displayed Chongde glass beads of mineral components composition more for glass and anorthite glass, also, analysis and calculation specimens of Raman spectrogram by get of the Raman index of polymerization (Ip). To display their sintering temperature of about 1000~1400℃, not the traditional alkaline glass systems 800~1000℃, may the effects of soda-lime glass systems containing alumina.

    (3) Using Ip, ν-max Si-O stretching peak wave number and δ-max Si-O bending peak wave number are compared with predecessors research in the chemical composition and data of Raman spectrum, cannot be fitted, main due to is in India-Pacific glass beads of Raman spectrum data of insufficient, and part data is with porcelain of data to instead of.

    (4) Micro X-ray fluorescence spectrometer (μ-XRF) constituent analysis of ancient glass beads, which been additive components of ancient glass beads may be used fluxing agents: Na2O, K2O; stabilizers: CaO, MgO; colorant: Fe2+, Cu+ and Cu2+; without opacifiers.

    (5) The result of specimens in the of chemical components: using Na2O, K2O, CaO, MgO and Al2O3 as end member which were analyzed by ternary phase diagram, respectively to CaO – (MgO+K2O) – Na2O,K2O – Al2O3 – CaO, CaO – K2O – Na2O phase diagrams which were used for classification of ancient glass beads., the research of glass beads mostly are high aluminum soda-lime-silicate system, which belong to Indo - Pacific glass beads, but the only two samples are low aluminum soda-lime-silicate system. These low aluminum soda-lime-silicate system glass beads, according to their era, and geographical distribution and archaeological site of data displayed, are mostly like glass beads which are manufactured from Taiwan.

    目錄 摘要 I Extended Abstract III 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1研究動機與目的 2 1.2研究流程 5 第二章 研究背景 7 2.1玻璃特性 7 2.2古玻璃珠的特徵 8 2.2.1古玻璃原料製作 8 2.2.2古玻璃製作技術 9 2.3區域性玻璃珠特徵 11 2.3.1古埃及與美索不達米亞玻璃珠 11 2.3.2印度-太平洋玻璃珠 13 2.3.3中國玻璃珠 16 2.3.4 16、17世紀歐洲玻璃珠 17 2.4台灣地區古玻璃珠研究 19 2.5花蓮崇德遺址背景 20 2.5.1地理環境 20 2.5.2崇德遺址文化內涵與意義 22 2.5.3崇德遺址位置與出土古玻璃珠 26 第三章 實驗原理與分析方法 31 3.1共軛聚焦顯微拉曼光譜儀 31 3.1.1拉曼光譜原理 31 3.1.2共軛聚焦顯微拉曼光譜儀系統介紹 33 3.1.3顯微拉曼光譜儀之實驗步驟 34 3.2 X光螢光光譜儀 35 3.2.1 X光螢光原理 35 3.2.2 X光螢光光譜儀系統介紹 36 3.2.3 X光螢光光譜儀之實驗步驟 37 第四章 實驗結果 38 4.1標本拉曼光譜分析結果 38 4.1.1標本標號TP1-003分析光譜 39 4.1.2標本標號TP1-004分析光譜 40 4.1.3標本標號TP1-017分析光譜 42 4.1.4 標本標號TP1-024分析光譜 44 4.1.5標本標號TP1-036分析光譜 46 4.1.6標本標號TP1-037分析光譜 49 4.1.7標本標號TP1-038分析光譜 51 4.1.8標本標號TP1-051分析光譜 53 4.1.9標本標號TP1-054分析光譜 54 4.1.10標本標號TP2-002分析光譜 55 4.2標本μ-XRF分析結果 57 4.3 小結 59 第五章 討論 61 5.1 拉曼聚合作用指數 61 5.2拉曼聚合作用指數、振動模式與玻璃化學成分關係 63 5.3化學成分三端元相圖 68 5.3.1 CaO – K2O – Na2O三端元相圖 68 5.3.2 K2O – Al2O3 – CaO三端元相圖 71 5.3.3 CaO –(MgO+K2O)– Na2O三端元相圖 73 第六章 結論與未來研究方向 76 6.1研究結論 76 6.2未來研究方向 77 參考文獻 78 英文部分 78 中文部分 83 附錄 87   表目錄 表2-1 中國古玻璃珠時間與玻璃珠化學分類表 17 表2-2 立霧溪流域南北二側鄰近地區史前文化層序 25 表2-3 崇德遺址珠飾統計表 30 表4-1 花蓮崇德古玻璃珠標本編號 38 表4-2 古玻璃珠化學元素比例 57 表4-3 古玻璃珠化合物成分比例 58 表4-4 崇德遺址玻璃珠拉曼光譜與化學成分分析結果 60 表5-1 拉曼光譜的聚合指數Ip、溫度與成分關係 62 表5-2 標本Ip數值與溫度關係 63 表5-3 Ip數值、δmax Si-O Bending、δmax Si-O Strenching 66   圖目錄 圖1-1 研究方法與流程示意圖 6 圖2-1 古玻璃珠製作技術 10 圖2-2 印度-太平洋玻璃珠東南亞製造中心示意圖 15 圖2-3 立霧溪流域地形坡度圖 21 圖2-4 太魯閣國家公園地質圖 22 圖2-5 立霧溪流於遺址分布示意圖 23 圖2-6 台灣地區史前文化時空架構示意圖 24 圖2-7 金屬器與金石並用時代文化分布圖 26 圖2-8 探坑TP1、TP2分布示意圖 28 圖2-9崇德遺址探坑TP1-L2b現象及遺留分布圖 29 圖3-1 瑞利散射、史拖克線與反史拖克線 32 圖3-2 顯微拉曼光譜儀結構圖 34 圖3-3 X光螢光生成示意圖 36 圖3-4 X光螢光光譜分析儀結構示意圖 37 圖4-1 TP1-003:紅色不透明釉質珠 39 圖4-2 a、c標本點照片;b、d為拉曼光譜圖 40 圖4-3 TP1-004:橙色不透明釉質珠 40 圖4-4 a、c、e照片中間為礦物標本點;b、d、e拉曼光譜圖光譜圖 42 圖4-5 TP1-017:半透明玻璃長形管珠 43 圖4-6 a、c、e標本點照片;b、d、e拉曼光譜圖光譜圖 44 圖4-7 TP1-024:紅色不透明釉質珠 45 圖4-8 a、c為標本點照片;b、d為拉曼光譜圖 46 圖4-9 TP1-036:橙色不透明釉質珠 46 圖4-10 a、c、e、g標本點照片;b、d、e、h拉曼光譜圖光譜圖 48 圖4-11 TP1-037:橙色不透明釉質珠 49 圖4-12 a、c、e標本點照片;b、d、e拉曼光譜圖光譜圖 50 圖4-13 TP1-038:橙色不透明釉質珠 51 圖4-14 a、c、e、g標本點照片;b、d、e、h拉曼光譜圖光譜圖 52 圖4-15 TP1-051:藍綠色系透明至半透明玻璃圓形小珠 53 圖4-16 a、c標本點照片;b、d拉曼光譜圖光譜圖 54 圖4-17 TP1-054:藍綠色系透明至半透明玻璃長形管珠 54 圖4-18 a、c標本點照片;b、d拉曼光譜圖光譜圖 55 圖4-19 TP2-002:藍綠色系透明至半透明玻璃長形管珠 56 圖4-20 a、c標本點照片;b、d拉曼光譜圖光譜圖 56 圖4-21 古玻璃珠(TP1-004F)μ-XRF分析位置圖 57 圖5-1 (a): IP與最大伸長振動波數關係圖;(b):最大伸長振動波數與最大彎曲振動波數關係圖 64 圖5-2 IP拉曼聚合作用指數與δmax Si-O Bending關係圖 66 圖5-3 IP拉曼聚合作用指數與νmax Si-O Stretching關係圖 67 圖5-4 本研究標本與陶瓷、玻璃關係圖 67 圖5-5本研究標本與化學成分、陶瓷、玻璃來源關係圖 68 圖5-6 十三行16類玻璃珠之CaO – K2O – Na2O三端元相圖 69 圖5-7 崇德玻璃珠CaO – K2O – Na2O為端元成分的三角圖, 70 圖5-8 崇德與十三行玻璃珠之CaO – K2O – Na2O為端元成分的三角圖 70 圖5-9 十三行16類玻璃珠之K2O – Al2O3 – CaO三端元相圖 72 圖5-10崇德玻璃珠K2O – Al2O3 – CaO三端元相圖 72 圖5-11 崇德與十三行玻璃珠之K2O – Al2O3 – CaO三端元相圖 73 圖5-12 十三行16類玻璃珠之CaO –(MgO+K2O)– Na2O三端元相圖 74 圖5-13崇德玻璃珠CaO –(MgO+K2O)– Na2O三端元相圖 74 圖5-14 崇德與十三行玻璃珠之CaO –(MgO+K2O)– Na2O三端元相圖 75

    英文部分
    Baart, J.(1988)Glass bead sites in Amsterdam. Historical Archaeology, 22(1): 67-75.
    Bell I.M, Clark, R.J.H. and Gibbs, P.J.(1997) Raman Spectroscopic Library of Natural and Synthetic Pigments(pre-1850 AD). Spectrochemica Acta Part A, 53: 2159-2179.
    Clark, R. J. H. and Curri, M. L.(1998)The identification by Raman microscopy and X-ray diffraction of iron-oxide pigments and of the red pigments found on Italian pottery fragments. Journal of Molecular Structure, 440: 105-111.
    Colomban, Ph.(2003)Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. Journal of Non-Crystalline Solids, 323: 180-187.
    Colomban, Ph., Tournié, A. and Bellot-Gurlet, L.(2006) Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. Journal of Raman Spectroscopy, 37: 841-852.
    De Beauclair, I.(1970)Dutch beads on Formosa? An ethnohistorical note. Bulletin of the Institute of Ethnology, Academia Sinica, 29(1): 394-402.
    Dubin, L.S.(1987)The History of Beads: From 30,000 B.C. to the present. Harry N. Abrams, Inc., New York. 364pp..
    Francis, P. Jr.(1986)Bead, the bead trade and state development in Southeast Asia. In Ancient Trades and Cultural Contacts in Southeast Asia, edited by Srisuchat Amara, The Office of the National Culture Commission, Bangkok, 139-152.
    Francis, P. Jr.(1990)Glass beads in Asia. Asian Perspectives, 29(1): 1-23.
    Francis, P. Jr.(1991) Some preliminary remarks on the identification of beads. SPAFA journal, 1(2):11-23.
    Francis, P. Jr.(2002)Asia's maritime bead trade: 300 B.C. to the present. University of Hawaii Press, U.S.A., 305 pp..
    Freestone, I.(1991)Looking into Glass. In Bowman, S.(ed.)Science and the past. London: British Museum Press.
    Gan, F.X.(2009)Origin and evolution of ancient Chinese glass. In Ancient Glass Research Along the Silk Road, edited by Fuxi Gan, World Scientific Co. Pte. Ltd., Singapore, 1-40.
    Hancock, R.G.V., Aufreiter, S., Kenyon, I and Latta, M.(1999)White glass beads from the Auger site, southern Ontario, Canada. Journal of archaeological science, 26(8): 907-912.
    Hayes, C. F.(1983)Proceedings of the 1982 glass trade bead conference, Research Records 16 , Research Division, Rochester Museum & Science Center, Rochester, U.S.A..
    Jackson, C.M.(2005)Glassmaking in Bronze-Age Egypt. Science, 308: 1750-1752.
    Janowski, M.(1998)Beads, prestige and life among the Kelabit of Sarawak, east Malaysia. Beads and bead makers: gender, edited by Sciama, L.D and Eicher, J.B., Oxford: Berg, 213-246.
    Jian Zhu, J., Yang, Y.M., Xu, W., Chen, D.L., Dong, J.Q., Wang, L.H. and Glascock, M.D.(2012)Study of an archeological opaque red glass bead from China by XRD, XRF, and XANES. X-Ray Spectroscopy, 41: 363-366.
    Karklins, K.(1983)Dutch trade beads in North American. In Proceeding s of the 1982 glass trade bead conference. Rochester, N.Y..
    Karklins, K., Hancock, R.G.V., Baart, J., Sempowski, M.L., Moreau, J.F., Barham, D., Aufreiter, S. and Kenyon, I.(2002)Analysis of glass beads and glass recovered from an early 17th-century glassmaking house in Amsterdam. ACS Symposium Series, 831: 110-127.
    Larkn, P.(2011)Infrared and Raman Spectroscopy; Principles and Spectral Interpretation, Elservier Press, U.S.A., 230pp..
    Li, Q.H., Liu, S., Su, B.M., Zhao, H.X. Fu, Q. and Dong, J.Q. (2013) Characterization of some Tin-contained ancient glass beads found in China by means of SEM-EDS and Raman spectroscopy. Microscopy Research and Technique, 76:133–140.
    McMillan, P.(1985)Vibrational spectroscopy in the mineral sciences. Microscopic to Macroscopic, 9 - 63.
    McMillan, P., and Hofmeister, A.M.(1988)Infrared and Ramans pectroscopy, in Spectroscopic Methods in Mineralogy and Geology, edited by F.C. Hawthorne, 99-160.
    Polikreti, K., Murphy, J.M.A., Kantarelou, V. and Karydas, A.G.(2011) XRF analysis of glass beads from the Mycenaean palace of Nestor at Pylos Peloponnesus, Greece: new insight into the LBA glass trade. Journal of Archaeological Science, 38: 2889-2896.
    Prinsloo, L.C. and Colomban, Ph.(2008)A Raman spectroscopic study of the Mapungubwe oblates: glass trade beads excavated at an Iron Age archaeological site in South Africa. Journal of Raman Spectroscopy, 39: 79-90.
    Prinsloo, L.C., Tournié, A. and Colomban, Ph.(2011)A Raman spectroscopic study of glass trade beads excavated at Mapungubwe hill and K2, two archaeological sites in southern Africa, raises questions about the last occupation date of the hill. Journal of Archaeological Science, 38: 3264-3277.
    Ramli, Z., Nik Abdul Rahman, N.H.S. and Samian, A.L.(2011) X-ray fluorescent analysis on Indo-Pacific glass beads from Sungai Mas archaeological sites, Kedah, Malaysia. Journal of Radioanalytical and Nuclear Chemistry, 287: 741-747.
    Rehren, T. and Pusch, E.B.(2005)Late Bronze Age glass production at Qantir-Piramesses, Egypt. Science, 308: 1756-1758.
    Rehren, T.(2008)A review of factors affecting the composition of early Egyptian glasses and faience: Alkali and alkali earth oxides. Journal of Archaeological Science, 35: 1345-1354.
    Ricciardi, P., Colomban, Ph., Tournie, A., Macchiarola, M. and Ayed, N.(2009)A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy. Journal of Archaeological Science, 36: 2551-2559.
    Robertshaw, P., Wood, M., Haour, A., Karklins, K. and Neff, H.(2014)Chemical analysis, chronology, and context of a European glass bead assemblage from Garumele, Niger. Journal of Archaeological Science, 41: 591-604.
    Sciama, L. D.(1998) Gender in the making, trading and uses of beads. An introductory essay. Beads and bead makers: gender, edited by Sciama, L.D and Eicher, J.B., Oxford: Berg, 1-46.
    Sempowski, M. L. et al.(2000)On the Transition from Tin-rich to Antimony-rich european white soda-glass trade Beads for the Senecas of Northeastern North America. Journal of radioanalytical and nuclear chemistry, 244 (3): 559-566.
    Sempowski, M. L. et al.(2001)Chemical analysis of 17th-century red glass trade beads from Northeastern North America and Amsterdam. Archaeometry, 43(4): 503-515.
    Shortland, A.J.(2002)The use and origin of antimonate colorants in early Egyptian glass. Archaeometry, 44, 517-530.
    Shortland, A.J., Rogers, N., and Eremin, K.(2007)Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. Journal of Archaeological Science, 34: 781-789.
    Shortland, A.J., Schachner, L., Freestone, I. and Tite, M.(2006)Natron as a flux in the early vitreous materials industry: sources, behinnings and reasons for decline. Journal of Archaeological Science, 33: 521-530.
    Smith, G. D. and Clark, R. J. H.(2004)Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137-1160.
    Straight, B.(2002)From Samburu heirloom to new age artifact: the cross-cultural consumption of mporo marriage beads. American anthropologist ,104(1):7-21.
    Tite, M., Pradell, T. and Shortland, A.(2008)Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: A reassessment. Archaeometry, 50: 67-84.
    Tite, M., Shortland, A. and Paynter, S.(2002)The beginnings of vitreous materials in the Near East and Egypt. Accounts of Chemical Research, 35: 585-593.
    Toffolo, M.B., Klein, E., Elbaum, R., Aja, A.J., Daniel M. Master, D.M. and Boaretto, E.(2013)An early Iron Age assemblage of faience beads from Ashkelon, Israel: chemical composition and manufacturing process. Journal of Archaeological Science, 40: 3626-3635.
    Turner, W.S.(1954)Studies in ancient glasses and glassmaking processes. Part 1, Crucibles amd melting temperatures employed in ancient Egypt at about 1370 B.C. Journal of the Society of Glass Technology, 38: 436-444.
    Welter, N., Schussler, U. and Kiefer, W.(2007)Characterization of inorganic pigments in ancient glass beads by means of Raman spectroscopy, microprobe analysis and X-ray diffractometry. Journal of Raman Spectroscopy, 38: 113-121.
    Zhao, H.X., Li, Q.H., Liua, S. and Gan, F.X. (2013) Characterization of microcrystals in some glass beads from China by means of confocal Raman spectroscopy. Journal of Raman Spectroscopy, 44: 643-649.
    Zhu, J. et al.(2012)Study of an archaeological opaque red glass bead from China by XRD, XRF, and XANES. Journal of Raman Spectroscopy, 41: 363-366.


    中文部分
    方建能、余炳盛(2005) 拉曼光譜儀:古器物與玉石鑑定的新利器。台灣博物,第二十四卷,第三期(87):78-83。
    王淑津、劉益昌 (2005)十七世紀前後臺灣玻璃珠飾與煙草、煙斗的輸入網絡:一個新的交換階段,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,135-162。
    王鑫(1984)太魯閣國家公園預定區地理、地形及地質景觀,內政部營建署,台北市。
    佐藤文一(1988)《臺灣原著種族的原始藝術研究》。台北:南天出版社。
    何春蓀(1994)台灣地質概論:台灣地質圖說明書。經濟部中央地質調查所,第二版,台北市,共189頁。
    何傳坤、崔劍鋒、劉克竑、吳小紅(2008)台灣鐵器時代出土遺址玻璃珠的科學分析,國立自然科學博物館館訊,第247期。
    何傳坤、劉克竑(2005)台中縣沙鹿鎮鹿寮遺址出土之玻璃器,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,202-210。
    李匡悌(2004)三舍暨社內遺址受相關水利工程影響範圍搶救考古發掘工作計畫,台南縣政府委託中央研究院歷史語言研究所執行之研究報告。
    李坤修(2005)舊香蘭遺址出土的玻璃質標本及其相關問題探討,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,95-120。
    林朝棨(1957)臺灣省通志稿卷一:土地志、地理篇,第一冊,臺灣省文獻委員會,台北。
    施正雄(2012) 儀器分析原理與應用。國家教育研究院主編,五南圖書出版公司,台北市,共915頁。
    洪曉純 (2005) 試論菲律賓玻璃珠-兼談臺灣玻璃珠,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,81-94。
    胡家瑜(2012)臺灣南島民族玻璃珠飾品的跨文化分析比較:對於形式、價值與物質性的一些思考。考古人類學刊,76: 97-134。
    許美智(2000)排灣族的琉璃珠。稻鄉出版社,台北市。
    陳光祖、鄭玠甫、李貞瑩 (2005)淇武蘭遺址出土含金屬箔玻璃珠的初步科學分析,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,163-193。
    陳有貝、邱水金(2002)宜蘭縣礁溪鄉淇武蘭遺址搶救發掘始末簡報,宜蘭縣政府文化局委託台灣大學之研究報告。
    陳奇祿(1966)臺灣排灣族群的古琉璃珠及其傳入年代的推測。考古人類學刊,28: 1-6。
    傅君、李坤修(2004)台東縣定古蹟巴蘭遺址範圍及文化內涵調查第一年研究,台東縣政府委託國立臺灣史前文化博物館執行之研究報告。
    葉美珍(1993)台東縣長濱鄉白桑安遺址試掘工作簡報,國立臺灣史前文化博物館籌備處通訊,1: 30-58。
    葉美珍(2005)港口遺址鐵器時代珠飾初探,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,121-134。
    臧振華(1978)南投縣集集鎮田寮園史前遺址試掘,中央研究院歷史語言研究所集刊,49(4):515-562。
    臧振華、李匡悌、朱正宜(2006)先民履跡:南科考古發現專輯,台南縣政府,台南縣。
    臧振華、劉益昌(2001)十三行遺址搶救與初步研究,台北縣政府委託中央研究院歷史語言研究所,台北,共140頁。
    臧振華、劉益昌等(2001)十三行遺址搶救與初步發掘,台北縣政府文化局,台北,共140頁。
    劉益昌(1992)臺灣的考古遺址,臺北縣立文化中心,臺北。
    劉益昌(1995)臺灣北部沿海地區史前時代晚期文化之探討,平埔研究論文集,潘英海、詹素娟主編,中央研究院臺灣史研究所籌備處,台北,1-20頁。
    劉益昌(1996)臺灣的史前文化與遺址,臺灣省文獻委員會;臺灣史蹟源流研究會,南投市,共80頁。
    劉益昌(2005)從玉器到玻璃、瑪瑙:臺灣史前裝飾器物的變遷,台灣地區外來物質:珠子與玻璃環玦形器研討會,中央研究院歷史語言研究所,台北,211-226。
    劉益昌、王淑津、鍾國風(2007)原住民文化與國家公園永續經營之研究:太魯閣立霧溪流域人文活動之研究,太魯閣國家公園管理處委託研究報告,內政部。
    劉益昌、李德河等(2004)高雄市左營舊城遺址範圍內「外興隆營區」考古試掘計畫期末報告,高雄市政府委託中央研究院人文社會研究中心考古學研究專題中心之研究報告。
    劉益昌、郭素秋、簡史朗(2004)九二一震災後Lalu遺址發掘及其意義,災難與重建-九二一震災與社會文化重建論文集,中央研究院臺灣史研究所籌備處,台北市,405-436。
    劉益昌、鍾國風、林美智 (2007) 《立霧溪流域人文發展之研究》,內政部營建署太魯閣國家公園管理處委託臺灣打里摺文化協會執行之研究報告。
    劉益昌、簡史朗(2011)雲林縣貓兒干遺址群內涵與範圍研究計畫成果報告書,雲林縣政府委託社團法人臺灣打里摺文化協會執行之研究報告。
    劉益昌、顏廷伃(2000)台東縣史前遺址內涵及研究範圍-海岸山脈東側與綠島,台東縣政府委託中央研究院歷史語言研究所之研究報告,台東,共104頁。
    劉益昌、顏廷伃、林美智、陳卉婷(2007)雲林縣考古遺址普查計畫成果報告書,雲林縣政府委託中央研究院歷史語言研究所執行之研究報告。
    劉益昌、顏廷伃、許理清 (2000)七家灣遺址受國民賓館影響範圍發掘報告,行政院國軍退除役官兵輔導委員會委託中央研究院歷史語言研究所之研究報告。
    潘瑋玲(2005)龍門舊社遺址的發掘與研究,台灣大學人類學研究所碩士論文,共181頁。
    鄭玠甫(2007)淇武蘭遺址與社內移指出土玻璃珠的相關研究。國立清華大學人類學研究所碩士論文,新竹市,共88頁。
    謝世豪(1994)玻璃之結構與特性,陶瓷技術手冊(下)汪見民主編,中華民國產業科技發展協會,台北市;中華民國粉末冶金協會出版,新竹縣,876-907頁。

    下載圖示 校內:2015-08-21公開
    校外:2015-08-21公開
    QR CODE