| 研究生: |
國志揚 Kuo, Chih-Yang |
|---|---|
| 論文名稱: |
具肋材之管式熱交換器內部側向散熱鰭片於最佳熱性能指標之設計 Optimization of Thermal Performance Factor of Pipe Type Heat Exchanger utilizing Internally Lateral Fins with Ribs |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 拉凡格氏法 、熱交換器 、含肋材Z-形內部側向散熱鰭片 、最佳化設計 |
| 外文關鍵詞: | Levenberg-Marquardt Method, Heat exchanger, Z-shape internally lateral fins with ribs, Optimal design |
| 相關次數: | 點閱:131 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用商業套裝軟體CFD-ACE+建立具肋材之管式熱交換器之三維模型,並透過拉凡格氏法(Levenberg-Marquardt Method)最佳化散熱鰭片之外形參數,以提升熱交換器之熱性能指標為目的來反算出含肋材之散熱鰭片之最佳化形狀。
本研究以文獻[1]為設計基礎並將其延伸,探討四種不同參數設計,並使用反算設計問題預測最佳散熱鰭片外形參數。案例一預測一組肋形散熱鰭片放置位置及高度,並與文獻[1]之結論相比,探討其外形改變對熱性能指標影響之趨勢;案例二將案例一中肋材之位置、高度分開於不同流道中作個別設計,並將其皆列為預測參數;案例三與案例四分別以兩組及三組肋材為初始設計,並將兩組與三組肋材之位置與高度列為參數,探討其各組參數改變對熱性能指標之影響,以上案例設計目標皆為取得熱交換器之最大熱性能指標。
由統計分析的結果顯示,經過最佳化設計後之熱交換器與無放置肋材之熱交換器相比,其平均紐賽數增加了36%,最大熱性能指標達到1.1343,達到本文之具肋材之管式熱交換器最佳化設計的目標。
A three-dimensional design problem is carried out in this thesis to examine the thermal-hydraulic characteristic of a heat exchanger with the Z-shape internally lateral fins with ribs. The objective is to utilize the commercial package CFD-ACE+ and the Levenberg-Marquardt Method (LMM) to estimate the optimal shapes of the ribs and to maximum the thermal performance factor of the heat exchanger.
The present work is to extend the research findings in [1] and to estimate the optimal rib shapes of the Z- shape internally lateral fins in four different cases under a fixed fin volume constraint to yield optimal thermal performance factor. In case A, one pair of rib with same rib position and rib height is considered and the design variables are taken as rib position and rib height. In case B, also considers one pair of rib, however, the rib positions and heights for the upper and lower ribs are different, i.e. there are four design variables in the case. In cases C and D, two and three pairs of ribs are considered, respectively, and the design variables are the rib positions and heights, i.e. the design variables are 4 and 6 for cases C and D, respectively.
Results indicated that case C can obtain the best thermal performance factor among all cases, its average Nusselt number and thermal performance factor are found 36% and 13.4% higher than those in the case without ribs. Besides, case D has the worst performance in thermal performance factor, and this implies that more pairs of ribs cannot guaranty better thermal performance factor.
1. Wang QW, Lin M, and Zeng M. Effect of lateral fin profiles on turbulent flow and heat transfer performance of internally finned tubes. Applied Thermal Engineering 2009;29:3006-13.
2. Webb RL, and Scott MJ. A parametric analysis of the performance of internally finned tubes for heat exchanger application. 1980;102:38-43.
3. Wang QW, Lin M, and Zeng M. Effect of blocked core-tube diameter on heat transfer performance of internally longitudinal finned tubes. Heat transfer engineering 2008;29.1:107-15.
4. Duan LF, Ling X, and Peng H. Flow and heat transfer characteristics of a double-tube structure internal finned tube with blossom shape internal fins. Applied Thermal Engineering 2018;128:1102-15.
5. Hajmohammadi MR. Optimal design of tree-shaped inverted fins. International Journal of Heat and Mass Transfer 2018;116:1352-60.
6. Hajmohammadi MR, Shariatzadeh OJ, Moulod M, Nourazar SS. Phi and Psi shaped conductive routes for improved cooling in a heat generating piece. International journal of thermal sciences 2014;77: 66-74.
7. Hajmohammadi MR. Introducing a ψ-shaped cavity for cooling a heat generating medium. International Journal of Thermal Sciences 2017; 121:204-12.
8. Wijayanta AT, Yaningsih I, Juwana WE, Muhammad A, Takahiko M. Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. Applied Thermal Engineering 2018;145:27-37.
9. Huang CH, Lu JJ, and Ay HC. A three-dimensional heat sink module design problem with experimental verification. International Journal of Heat and Mass Transfer 2011;54:1482-92.
10. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. Journal of the society for Industrial and Applied Mathematics 1963;11:431-41.
11. CFD-ACE+ user’s manual, ESI-CFD Inc., 2016.
12. Huang CH, and Chen YH. An impingement heat sink module design problem in determining simultaneously the optimal non-uniform fin widths and heights. International Journal of Heat and Mass Transfer 2014;73:627-33.
13. Vandoormaal JP, and Raithby GD. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical heat transfer 1984;7:147-63.
14. Edward LB, and Brian SD. The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, turbulence and combustion. Pergamon, 1983;96-116.
15. Brian SD. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program. 1974.
16. Saha SK, Tiwari M, Sunden B, Wu Z. Advances in heat transfer enhancement. Springer International Publishing 2016.
校內:2025-09-01公開