研究生: |
曾紳睿 Tseng, Shen-Jui |
---|---|
論文名稱: |
生物相容性高分子之表面修飾並結合物理性刺激於類成骨細胞與脂肪幹細胞生長與分化之研究 Studies of biocompatible polymer surface modification combined with physical stimulation for osteoblast-like cells and adipose-derived stem cells proliferation and differentiation |
指導教授: |
林睿哲
Lin, Jui-Che |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 147 |
中文關鍵詞: | 聚二甲基矽氧烷 、聚氨酯 、表面修飾 、仿生動態培養 、轉化生長因子 、抗氧化劑 、類成骨細胞 、大鼠脂肪幹細胞 、軟骨形成分化 |
外文關鍵詞: | surface modification, polydimethylsiloxane, polyurethane, dynamic cell culture, osteoblast-like MG-63, rat adipose-derived stem cell, transforming growth factor beta 1, N-acetylcysteine, chondrogenic differentiation |
相關次數: | 點閱:108 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來,細胞培養技術在生物科技領域具有極大的研究價值,細胞在生物體內無時無刻都受到物理刺激(Physical stimulation),而這些物理刺激透過細胞再轉換成化學信號(Chemical signal),這些化學信號對於細胞的生理行為扮演著重要的腳色,例如:細胞凋亡(Apoptosis)、細胞分化(Cell differentiation)、細胞增殖(Cell proliferation)、細胞遷移(Cell migration) 等。傳統細胞培養方式是使用聚苯乙烯為材料的培養皿(Dish)或者培養角瓶(Flask)進行細胞培養,這種培養方式雖然可以大量的培養細胞,但無法得到較貼近生理環境的細胞生理行為,因此,仿生動態培養對於生物科技的研究是必要的。
目前較常使用的細胞生物相容性彈性體,如:聚二甲基矽氧烷 (Polydimethylsiloxane, PDMS)及聚氨酯(Polyurethane, PU),多數文獻的作法是將基材浸泡於蛋白質(如:type I collagen)溶液使蛋白質沉積在基材表面,但此方法可能在動態培養過程造成材料表面原本沉積的蛋白質脫落,而導致細胞脫離基材表面而死亡。因此,本研究以濕式化學法對PDMS及PU兩種彈性體進行表面修飾,透過共價鍵(covalent bond)將生物相容性高分子或蛋白質接枝在彈性體的表面且不影響其原本物理性質(如:透光度及機械強度),同時在培養過程中結合週期性物理刺激來促進細胞的生長與分化。
本實驗以週期性物理拉伸/壓縮兩種模式來模擬生理微環境,在此環境下觀察二維PDMS基材(Two-Dimensional, 2D PDMS substrate)與三維PU支架(Three-Dimensional PU scaffold, 3D PU scaffold)表面修飾層對於類成骨細胞 (Osteoblast-like MG-63 cells)與大鼠脂肪幹細胞(rat Adipose-Derived Stem Cells, rADSCs)生長與分化之影響。PDMS透過常壓氧氣電漿將其表面導入氫氧官能基(Hydroxyl groups),接著利用戊二醛將表面修飾層(Alginate, type I collagen, poly-l-lysine, fibronectin and laminin)與基材進行共價鍵交聯並以MG-63進行動態培養且觀察其生長與分化。透過 ESCA 分析確認表面修飾層成功接枝於基材表面外,同時經由超音波震盪確認本研究接枝方法可穩定將表面修飾層接枝於PDMS表面以確保動態培養過程中細胞貼附的穩定性。由於MG-63為一類成骨細胞,其細胞所分泌的細胞外基質(Extracellular matrix, ECM)含有type I collagen,實驗結果發現PDMS表面修飾type I collagen相較於其他表面修飾層,除了具有良好的促進增殖效果外,骨分化指標:鹼性磷酸酶(Alkaline phosphatase, ALP)與骨鈣素(Osteocalcin, OCN)也有顯著上升。
本研究除了觀察表面修飾層與細胞分泌 ECM 之相容性外,也進一步利用表面修飾概念,將具有功能性的表面修飾層與細胞膜直接進行接觸,來促進rADSCs生長或分化。分別將PDMS表面接枝type I collagen與type I collagen/transforming growth factor beta-1 (TGF-β1),利用PDMS表面的TGF-β1 直接與細胞膜上的受器receptor II serine/threonine接觸,直接對rADSCs進行軟骨誘導分化(Chodrogenesis differentiation)。常見的誘導方式為使用軟骨分化培養基(含有TGF-β1)進行長天數培養(大於7天),本研究發現TGF-β1修飾於PDMS表面並搭配週期性物理拉伸進行誘導,相較於傳統誘導方式,72小時即可觀察到軟骨形成分化基因:SOX-9、col2a1、aggrecan (ACN) 與proteoglycans蛋白質分泌。另一方面,本研究亦將抗氧化劑type I collagen/N-acetylcysteine (NAC) 接枝到 PU scaffold 孔洞表面,透過直接接觸細胞膜來調節extracellular signal-regulated kinases–mitogen-activated protein kinases (ERK-MAPK) 訊號路徑,希望藉此提升細胞的抗氧化能力。由實驗結果發現,經過72小時共培養,PU scaffold 孔洞表面修飾NAC並搭配週期性物理壓縮除可促進軟骨形成分化基因:SOX-9、aggrecan表現外,同時出現明顯的細胞增殖效果。
SUMMARY
A mild and stable process for PDMS surface modification and a bio-mimicking dynamic culturing platform were developed to evaluate the cellular responses of osteoblast-like MG-63 cells on PDMS substrate with different hydrophilic grafting layer. The experimental platform developed here, including the dynamic culture system and the modification scheme for forming PDMS-COLL, could be beneficial in evaluating the cellular responses in a more bio-mimicking and clinically relevant manner as well as in cultivating the cell/tissue needed for clinical applications.
The growth factor, TGF-β1, was co-grafted with the type I collagen onto the elastic PDMS substrate for examining the combinatory effect of surface chemistry and mechanical stimuli on rADSCs’ chondrogenesis differentiation. After 72hr static culture, the PDMS-COLL and PDMSCOLL/TGF-β1 were shown to be effective to induce the chondrogenic differentiation than control group. In contrast, if the dynamic stretching stimuli were utilized, the efficiency in chondrogenic differentiation is dependent upon the substrate as well as the dynamic stretching protocol utilized. The surface grafted with collagen and TGF-β1 layer induced more proteoglycan secretion than the one with collagen only.
For PU scaffold applications, the extracellular matrix-like type I collagen layer and the grafted antioxidative reagent NAC have improved the rADSCs adherence and enhanced the stem cell proliferation efficiency in vitro. Further, the use of dynamic compression stimulation has promoted rADSCs differentiation into the chondrogenic lineage within a short cell culture duration. This anti-oxidative PU scaffold in the combination of physical compression stimulation could become a novel approach for stem cell therapy in the future.
參考文獻
1. Ehrlich, P. J.; Lanyon, L. E., Mechanical Strain and Bone Cell Function: A Review. Osteoporosis Int 13 688-700, 2002.
2. Kim, B. S.; Nikolovski, J.; Bonadio, J.; Mooney, D. J., Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17 979-983, 1999.
3. Fu, S.; Yin, L.; Lin, X.; Lu, J.; Wang, X., Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor. Int J Mol Sci 19 (6), 2018.
4. Yang, H.; Schmidt, L. P.; Wang, Z.; Yang, X.; Shao, Y.; Borg, T. K.; Markwald, R.; Runyan, R.; Gao, B. Z., Dynamic Myofibrillar Remodeling in Live Cardiomyocytes under Static Stretch. Sci Rep 6 20674, 2016.
5. Tata, U.; Xu, H.; Rao, S. M. N.; Chuong, C.-J.; Nguyen, K. T.; Chiao, J. C., A Novel Multiwell Device to Study Vascular Smooth Muscle Cell Responses Under Cyclic Strain. J Nanotechnol Eng Med 2 (2), 210071-210076, 2011.
6. Kazunori, S.; Atsushi, S.; Kenichi, M.; Mitsuru, H.; Satoshi, K., Development of a biochip with serially connected pneumatic balloons for cell-stretching culture. Sensor Actuat B Chem 156 486-493, 2011.
7. Moles, M. D.; Scotchford, C. A.; Ritchie, A. C., Development of an elastic cell culture substrate for a novel uniaxial tensile strain bioreactor. J Biomed Mater Res A 102 (7), 2356-2364, 2013.
8. Webb, K.; Hitchcock, R. W.; Smeal, R. M.; Li, W.; Gray, S. D.; Tresco, P. A., Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39 (6), 1136-1144, 2006.
9. Halldorsson, S.; Lucumi, E.; Gomez-Sjoberg, R.; Fleming, R. M., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63 218-31, 2015.
10. Zheng, J.; Song, W.; Huang, H.; Chen, H., Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography. Colloids Surf B Biointerfaces 77 (2), 234-9, 2010.
11. Kleinman, H. K.; Philp, D.; Hoffman, M. P., Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14 (5), 526-32, 2003.
12. Khalili, A. A.; Ahmad, M. R., A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci 16 (8), 18149-84, 2015.
13. Ringer, P.; Colo, G.; Fassler, R.; Grashoff, C., Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 64 6-16, 2017.
14. Hamouni, S.; Arous, O.; Abdessemed, D.; Nezzal, G.; Van der Bruggen, B., Alcohol and Alkane Organic Extraction Using Pervaporation Process. Macromolecular Symposia 386 (1), 1800247, 2019.
15. Sturgess, C.; Tuck, C. J.; Ashcroft, I. A.; Wildman, R. D., 3D reactive inkjet printing of polydimethylsiloxane. Journal of Materials Chemistry C 5 (37), 9733-9743, 2017.
16. Kuncová-Kallio, J.; Kallio, P. J., PDMS and its Suitability for Analytical Microfluidic Devices Proceedings of the 28th IEEE EMBS Annual International Conference 2486-2489, 2006.
17. Chuah, Y. J.; Koh, Y. T.; Lim, K.; Menon, N. V.; Wu, Y.; Kang, Y., Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep 5 18162, 2015.
18. Victor, A.; Ribeiro, J.; F. Araújo, F., Study of PDMS characterization and its applications in biomedicine: A review. Journal of Mechanical Engineering and Biomechanics 4 (1), 1-9, 2019.
19. Ferrari, M.; Cirisano, F.; Morán, M. C., Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces 3 (2), 48, 2019.
20. Menicon Life Science, https://www.menicon-lifescience.com/english/shellpa.html#05.
21. Flexcell International Corporation, https://www.flexcellint.com/product/uniflex-culture-plates.
22. Cooper, S. L.; Guan, J., Advances in Polyurethae Biomaterials. 1-691, 2016.
23. 林睿哲, 聚氨酯薄膜於週期動態細胞培養之開發. 科技部補助產學合作研究計畫 1-50, 2016.
24. Cha, C.; Antoniadou, E.; Lee, M.; Jeong, J. H.; Ahmed, W. W.; Saif, T. A.; Boppart, S. A.; Kong, H., Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue. Angew Chem Int Ed Engl 52 (27), 6949-6952, 2013.
25. Yang, L.; Li, L.; Tu, Q.; Ren, L.; Zhang, Y.; Wang, X.; Zhang, Z.; Liu, W.; Xin, L.; Wang, J., Photocatalyzed Surface Modification of Poly(dimethylsiloxane) with Polysaccharides and Assay of Their Protein Adsorption and Cytocompatibility. Anal Chem 82 6430-6439, 2010.
26. Kovach, K. M.; Capadona, J. R.; Gupta, A. S.; Potkay, J. A., The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. J Biomed Mater Res A 102 (12), 4195-205, 2014.
27. Keshvari, H.; Mirzadeh, H.; Mansoori, P.; Orang, F.; Khorasani, M. T., Collagen Immobilization onto Acrylic Acid Laser-grafted Silicone for Using as Artificial Skin: In Vitro. Iran Polym J 17 (3), 171-182, 2008.
28. Bodas, D.; Rauch, J.-Y.; Khan-Malek, C., Surface modification and aging studies of addition-curing silicone rubbers by oxygen plasma. European Polymer Journal 44 (7), 2130-2139, 2008.
29. Alves, P.; Coelho, J. F. J.; Haack, J.; Rota, A.; Bruinink, A.; Gil, M. H., Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal 45 (5), 1412-1419, 2009.
30. Stamm, M., Polymer Surfaces and Interfaces-Characterization, Modification and Applications. 1-337, 2007.
31. Forch, R.; Schonherr, H.; Jenkins, A. T. A., Surface Design: Applications in Bioscience and Nanotechnology. Wiley‐VCH Verlag GmbH & Co. KGaA 1-516, 2009.
32. Pujari, S. P.; Scheres, L.; Marcelis, A. T.; Zuilhof, H., Covalent surface modification of oxide surfaces. Angew Chem Int Ed Engl 53 (25), 6322-56, 2014.
33. Zhang, H.; Bian, C.; Jackson, J. K.; Khademolhosseini, F.; Burt, H. M.; Chiao, M., Fabrication of robust hydrogel coatings on polydimethylsiloxane substrates using micropillar anchor structures with chemical surface modification. ACS Appl Mater Interfaces 6 (12), 9126-9133, 2014.
34. Uto, K.; Tsui, J. H.; DeForest, C. A.; Kim, D. H., Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology. Prog Polym Sci 65 53-82, 2017.
35. Watson, P. A., Function follows form: generation of intracellular signals by cell deformation. FASEB J. 5 (7), 2013-2019, 1991.
36. Riehl, B. D.; Park, J. H.; Kwon, I. K.; Lim, J. Y., Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng Part B Rev 18 288-300, 2012.
37. Simmons, C. A.; Matlis, S.; Thornton, A. J.; Chen, S.; Wang, C.-Y.; Mooney, D. J., Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech 36 (8), 1087-1096, 2003.
38. Chang, Y.; Shao, Y.; Liu, Y.; Xia, R.; Tong, Z.; Zhang, J.; Zhai, Z.; Cheng, W.; Li, H., Mechanical strain promotes osteogenic differentiation of mesenchymal stem cells on TiO2 nanotubes substrate. Biochem Biophys Res Commun 511 (4), 840-846, 2019.
39. McKee, C.; Hong, Y.; Yao, D.; Chaudhry, G. R., Compression Induced Chondrogenic Differentiation of Embryonic Stem Cells in Three-Dimensional Polydimethylsiloxane Scaffolds. Tissue Eng Part A 23 (9-10), 426-435, 2017.
40. Zhang, B.; Luo, Q.; Chen, Z.; Sun, J.; Xu, B.; Ju, Y.; Song, G., Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells. Stem Cell Res 14 (2), 155-64, 2015.
41. Katanosaka, Y.; Bao, J. H.; Komatsu, T.; Suemori, T.; Yamada, A.; Mohri, S.; Naruse, K., Analysis of cyclic-stretching responses using cell-adhesion-patterned cells. J Biotechnol 133 82-89, 2008.
42. Nguyen, M. D.; Tinney, J. P.; Ye, F.; Elnakib, A. A.; Yuan, F.; El-Baz, A.; Sethu, P.; Keller, B. B.; Giridharan, G. A., Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87 (4), 2107-2113, 2015.
43. Nguyen, M. D.; Tinney, J. P.; Yuan, F.; Roussel, T. J.; El-Baz, A.; Giridharan, G.; Keller, B. B.; Sethu, P., Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation. Anal Chem 85 (18), 8773-9, 2013.
44. Wang, J. H. C.; Yang, G.; Li, Z., Controlling Cell Responses to Cyclic Mechanical Stretching. Ann Biomed Eng 33 337-342, 2005.
45. Neidlinger-Wilke, C.; Grood, E. S.; Wang, J. H. C.; Brand, R. A.; Claes, L., Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 19 286-293, 2001.
46. Wang, S.; Zhang, Z.; Lu, D.; Xu, Q., Effects of mechanical stretching on the morphology and cytoskeleton of vaginal fibroblasts from women with pelvic organ prolapse. Int J Mol Sci 16 (5), 9406-9419, 2015.
47. Masuda, T.; Takahashi, I.; Anada, T.; Arai, F.; Fukuda, T.; Takano-Yamamoto, T.; Suzuki, O., Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 133 231-238, 2008.
48. Stucki, A. O.; Stucki, J. D.; Hall, S. R.; Felder, M.; Mermoud, Y.; Schmid, R. A.; Geiser, T.; Guenat, O. T., A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip 15 1302-1310, 2015.
49. Webb, K.; Li, W.; Hitchcock, R. W.; Smeal, R. M.; Gray, S. D.; Tresco, P. A., Comparison of human fibroblast ECM-related gene expression on elastic three-dimensional substrates relative to two-dimensional films of the same material. Biomaterials 24 (25), 4681-4690, 2003.
50. Sharifpoor, S.; Simmons, C. A.; Labow, R. S.; Santerre, J. P., A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity. Acta Biomater 6 (11), 4218-4228, 2010.
51. Teng, S.; Liu, C.; Guenther, D.; Omar, M.; Neunaber, C.; Krettek, C.; Jagodzinski, M., Influence of biomechanical and biochemical stimulation on the proliferation and differentiation of bone marrow stromal cells seeded on polyurethane scaffolds. Exp Ther Med 11 2086-2094, 2016.
52. Tienen, T. G. V.; Heijkants, R. G. J. C.; Buma, P.; Groot, J. H. D.; Pennings, A. J.; Veth, R. P. H., Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23 1371-1378, 2002.
53. Schätti, O.; Grad, S.; Goldhahn, J.; Salzmann, G.; Li, Z.; Alini, M.; Stoddart, M. J., A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. European Cells and Materials 22 214-225, 2011.
54. Liu, C.; Abedian, R.; Meister, R.; Haasper, C.; Hurschler, C.; Krettek, C.; von Lewinski, G.; Jagodzinski, M., Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials 33 (4), 1052-64, 2012.
55. Tattersall, L.; Davison, Z.; Gartland, A., Osteosarcoma. Encyclopedia of Bone Biology 362-378, 2020.
56. Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Thun, M. J., Cancer Statistics, 2007. CA Cancer J Clin 57 43-66, 2007.
57. Hu, H.; Zhang, Y.; Cai, X. H.; Huang, J. F.; Cai, L., Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett 4 (5), 1037-1042, 2012.
58. Pautke, C.; Schieker, M.; Tischer, T.; Kolk, A.; Neth, P.; Mutschler, W.; Milz, S., Characterization of Osteosarcoma Cell Lines MG-63, Saos-2 and U-2 OS in Comparison to Human Osteoblasts. Anticancer Res 24 3743-3748, 2004.
59. Syed, B. A.; Evans, J. B., Stem cell therapy market. Nat Rev Drug Discov 12 (3), 185-186, 2013.
60. 盧青佑; 葉嘉新, 幹細胞治療產品的產業發展與法規研究. RegMed 37 1-5, 2013.
61. 何弘能; 吳美枝, 幹細胞的未來. 科學發展 472 72-75, 2012.
62. Takahashi, K.; Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4), 663-76, 2006.
63. Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y., Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114 108765, 2019.
64. Megaloikonomos, P. D.; Panagopoulos, G. N.; Bami, M.; Igoumenou, V. G.; Dimopoulos, L.; Milonaki, A.; Kyriakidou, M.; Mitsiokapa, E.; Anastassopoulou, J.; Mavrogenis, A. F., Harvesting, Isolation and Differentiation of Rat Adipose-Derived Stem Cells. Curr Pharm Biotechnol 19 (1), 19-29, 2018.
65. Lee, J. N.; Jiang, X.; Ryan, D.; Whitesides, G. M., Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20 11684-11691, 2004.
66. Peterson, S. L.; McDonald, A.; Gourley, P. L.; Sasaki, D. Y., Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. J Biomed Mater Res A 72 10-18, 2005.
67. Hsieh, C. H.; Kuo, W. T.; Huang, Y. C.; Huang, Y. Y., High-efficiency cell seeding method by relatively hydrophobic culture strategy. J Biomed Mater Res B Appl Biomater 98 38-46, 2011.
68. Sarvi, F.; Yue, Z.; Hourigan, K.; Thompson, M. C.; Chan, P. P. Y., Surface-functionalization of PDMS for potential micro-bioreactor and embryonic stem cell culture applications. J. Mater. Chem. B 1 987-996, 2013.
69. Fujita, S.; Wakuda, Y.; Matsumura, M.; Suye, S. I., Geometrically customizable alginate hydrogel nanofibers for cell culture platforms. J Mater Chem B 7 (42), 6556-6563, 2019.
70. Lou, J.; Stowers, R.; Nam, S.; Xia, Y.; Chaudhuri, O., Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154 213-222, 2018.
71. Kouhi, M.; Fathi, M.; Prabhakaran, M. P.; Shamanian, M.; Ramakrishna, S., Poly L lysine-modified PHBV based nanofibrous scaffolds for bone cell mineralization and osteogenic differentiation. Appl Surf Sci 457 616-625, 2018.
72. Silva, C. S.; Pinto, R. D.; Amorim, S.; Pires, R. A.; Correia-Neves, M.; Reis, R. L.; Alves, N. L.; Martins, A.; Neves, N. M., Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. Biomacromolecules 2020.
73. Barros, D.; Conde-Sousa, E.; Goncalves, A. M.; Han, W. M.; Garcia, A. J.; Amaral, I. F.; Pego, A. P., Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems. Biomater Sci 7 (12), 5338-5349, 2019.
74. Ayabe, H.; Anada, T.; Kamoya, T.; Sato, T.; Kimura, M.; Yoshizawa, E.; Kikuchi, S.; Ueno, Y.; Sekine, K.; Camp, J. G.; Treutlein, B.; Ferguson, A.; Suzuki, O.; Takebe, T.; Taniguchi, H., Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation through Intercellular TGFB Signaling. Stem Cell Reports 11 (2), 306-316, 2018.
75. Giustarini, D.; Galvagni, F.; Dalle Donne, I.; Milzani, A.; Severi, F. M.; Santucci, A.; Rossi, R., N-acetylcysteine ethyl ester as GSH enhancer in human primary endothelial cells: A comparative study with other drugs. Free Radic Biol Med 126 202-209, 2018.
76. Massagu´e, J., TGF-β SIGNAL TRANSDUCTION. Annu Rev Biochem 67 753-791, 1998.
77. Su, E.; Han, X.; Jiang, G., The transforming growth factor beta 1/SMAD signaling pathway involved in human chronic myeloid leukemia. Tumori 96 659-666, 2010.
78. Costa, F.; Sousa, D. M.; Parreira, P.; Lamghari, M.; Gomes, P.; Martins, M. C. L., N-acetylcysteine-functionalized coating avoids bacterial adhesion and biofilm formation. Sci Rep 7 (1), 17374, 2017.
79. Samuni, Y.; Goldstein, S.; Dean, O. M.; Berk, M., The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830 (8), 4117-29, 2013.
80. Li, W. Q.; Dehnade, F.; Zafarullah, M., Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275 (3), 789-94, 2000.
81. RTI Laboratories, FTIR Analysis, https://rtilab.com/techniques/ftir-analysis/.
82. Lam, L. M. T.; Dufresne, P. J.; Longtin, J.; Sedman, J.; Ismail, A. A., Reagent-Free Identification of Clinical Yeasts by Use of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Journal of Clinical Microbiology 57 (5), e01739-18, 2019.
83. SpectraTech, Introduction to Attenuated Total Internal Reflectance (ATR).
84. Anton Paar. Attenuated total reflectance (ATR).
85. Decker, E. L.; Frank, B.; Suo, Y.; Garoff, S., Physics of contact angle measurement. Colloids Surf, A Physicochem Eng Asp 156 177-189, 1999.
86. Majhy, B.; Iqbal, R.; Sen, A. K., Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic - superhydrophilic surface. Sci Rep 8 (1), 18018, 2018.
87. Law, K. Y., Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J Phys Chem Lett 5 (4), 686-8, 2014.
88. Drioli, E.; Giorno, L., Encyclopedia of Membranes. Springer-Verlag Berlin Heidelberg 2055-2070, 2016.
89. Elimelech, M.; Chen, W. H.; Waypa, J. J., Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Demhation 95 269-286, 1994.
90. Salgın, S.; Salgın, U.; Tuzlalı, N., Determination of correct zeta potential of polyether sulfone membranes using CLC and AGC: ionic environment effect. Desalination and Water Treatment 57 (54), 26031-26040, 2016.
91. ETH Zürich, Scanning Electron Microscopy, https://www.microscopy.ethz.ch/sem.htm.
92. 王馨翊, 聚氨酯薄膜於週期動態細胞培養之開發. 國立成功大學碩士論文 2017.
93. Vickerman, J. C.; Gilmore, I. S., Surface Analysis – The Principal Techniques, 2nd Edition. John Wiley & Sons, Ltd. 1-679, 2009.
94. Schneider, T.; Artyushkova, K.; Fulghum, J. E.; Broadwater, L.; Smith, A.; Lavrentovich, O. D., Oriented Monolayers Prepared from Lyotropic Chromonic Liquid Crystal. Langmuir 21 2300-2307, 2005.
95. 徐逸明; 游閔盛; 郭有斌; 黃傑; 洪昭南, 常壓電漿原理、技術與應用. 馗鼎奈米科技股份有限公司 8-29.
96. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Jaeyoung, P.; Selwyn, G. S.; Hicks, R. F., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science 26 (6), 1685-1694, 1998.
97. Lee, P. Y.; Costumbrado, J.; Hsu, C. Y.; Kim, Y. H., Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp (62), 2012.
98. Yılmaz, M.; Ozic, C.; Gok, I., Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. 1-9, 2012.
99. Distantina, S.; Rochmadi; Fahrurrozi, M.; Wiratni, Preparation and Characterization of Glutaraldehyde-Crosslinked Kappa Carrageenan Hydrogel. Engineering J 17 (3), 57-66, 2013.
100. Armyanov, S.; Stankova, N. E.; Atanasov, P. A.; Valova, E.; Kolev, K.; Georgieva, J.; Steenhaut, O.; Baert, K.; Hubin, A., XPS and μ-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 360 30-35, 2015.
101. Human TGF beta 1 Platinum ELISA PRODUCT INFORMATION & MANUAL. ThermoFisher Scientific 1-23.
102. Sin, D.; Miao, X.; Liu, G.; Wei, F.; Chadwick, G.; Yan, C.; Friis, T., Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C 30 (1), 78-85, 2010.
103. Chuang, J.-J.; Huang, Y.-Y.; Lo, S.-H.; Hsu, T.-F.; Huang, W.-Y.; Huang, S.-L.; Lin, Y.-S., Effects of pH on the Shape of Alginate Particles and Its Release Behavior. Int J Polym Sci 2017 1-9, 2017.
104. Butler, M. F.; Ng, Y. F.; Pudney, P. D. A., Mechanism and Kinetics of the Crosslinking Reaction between Biopolymers Containing Primary Amine Groups and Genipin. J Polym Sci Pol Chem 41 3941-3953, 2003.
105. Mi, F. L.; Shyu, S. S.; Peng, C. K., Characterization of Ring-Opening Polymerization of Genipin and pH-Dependent Cross-Linking Reactions Between Chitosan and Genipin. J Polym Sci Pol Chem 43 1985-2000, 2005.
106. Bart, J.; Tiggelaar, R.; Yang, M.; Schlautmann, S.; Zuilhof, H.; Gardeniers, H., Room-temperature intermediate layer bonding for microfluidic devices. Lab Chip 9 (24), 3481-3488, 2009.
107. De, R., A general model of focal adhesion orientation dynamics in response to static and cyclic stretch. Commun Biol 1 81, 2018.
108. Latief, N.; Raza, F. A.; Bhatti, F. U.; Tarar, M. N.; Khan, S. N.; Riazuddin, S., Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis. Cell Biol Int 40 (5), 579-88, 2016.
109. Migneault, I.; Dartiguenave, C.; Bertrand, M. J.; Waldron, K. C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37 790-802, 2004.
110. Wang, F.; Lu, X.; Li, X. Y., Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery. J Hazard Mater 308 75-83, 2016.
111. Matin, A.; Shafi, H.; Wang, M.; Khan, Z.; Gleason, K.; Rahman, F., Reverse osmosis membranes surface-modified using an initiated chemical vapor deposition technique show resistance to alginate fouling under cross-flow conditions: Filtration & subsequent characterization. Desalination 379 108-117, 2016.
112. Liu, F.; Csetenyi, L.; Gadd, G. M., Amino acid secretion influences the size and composition of copper carbonate nanoparticles synthesized by ureolytic fungi. Appl Microbiol Biotechnol 103 (17), 7217-7230, 2019.
113. Hoshiba, T.; Yoshikawa, C.; Sakakibara, K., Characterization of Initial Cell Adhesion on Charged Polymer Substrates in Serum-Containing and Serum-Free Media. Langmuir 34 (13), 4043-4051, 2018.
114. Carré, A.; Lacarrière, V., How Substrate Properties Control Cell Adhesion. A Physical–Chemical Approach. J Adhes Sci Technol 24 (5), 815-830, 2010.
115. Wu, Z.; Wang, H.; Tian, X.; Cui, P.; Ding, X.; Ye, X., The effects of polydimethylsiloxane on transparent and hydrophobic waterborne polyurethane coatings containing polydimethylsiloxane. Phys Chem Chem Phys 16 (14), 6787-94, 2014.
116. Wang, X.; Yang, Y.; Hu, X.; Kawazoe, N.; Yang, Y.; Chen, G., Morphological and Mechanical Properties of Osteosarcoma Microenvironment Cells Explored by Atomic Force Microscopy. Analytical Sciences 32 1177-1182, 2016.
117. Tondon, A.; Kaunas, R., The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS One 9 (2), 1-10, 2014.
118. Shapira, L.; Halabi, A., Behavior of two osteoblast-like cell lines cultured on machined or rough titanium surfaces. Clin Oral Implants Res 20 (1), 50-5, 2009.
119. Bozec, L.; Odlyha, M., Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophys J 101 (1), 228-36, 2011.
120. Lin, J. H.; Chang, H. Y.; Kao, W. L.; Lin, K. Y.; Liao, H. Y.; You, Y. W.; Kuo, Y. T.; Kuo, D. Y.; Chu, K. J.; Chu, Y. H.; Shyue, J. J., Effect of surface potential on extracellular matrix protein adsorption. Langmuir 30 (34), 10328-10335, 2014.
121. Grigore, A.; Sarker, B.; Fabry, B.; Boccaccini, A. R.; Detsch, R., Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 20 (15-16), 2140-50, 2014.
122. Tsai, S. W.; Liou, H. M.; Lin, C. J.; Kuo, K. L.; Hung, Y. S.; Weng, R. C.; Hsu, F. Y., MG63 osteoblast-like cells exhibit different behavior when grown on electrospun collagen matrix versus electrospun gelatin matrix. PLoS One 7 (2), 1-11, 2012.
123. Tjin, M. S.; Chua, A. W. C.; Moreno-Moral, A.; Chong, L. Y.; Tang, P. Y.; Harmston, N. P.; Cai, Z.; Petretto, E.; Tan, B. K.; Tryggvason, K., Biologically relevant laminin as chemically defined and fully human platform for human epidermal keratinocyte culture. Nat Commun 9 (1), 4432, 2018.
124. Hart, N. H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R. U., Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact 17 114-139, 2017.
125. Chen, Y. J.; Chang, M. C.; Jane Yao, C. C.; Lai, H. H.; Chang, J. Z.; Jeng, J. H., Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching. J Formos Med Assoc 113 (7), 447-453, 2014.
126. Xia, P.; Wang, X.; Qu, Y.; Lin, Q.; Cheng, K.; Gao, M.; Ren, S.; Zhang, T.; Li, X., TGF-beta1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther 8 (1), 281, 2017.
127. Pfeifer, C. G.; Karl, A.; Kerschbaum, M.; Berner, A.; Lang, S.; Schupfner, R.; Koch, M.; Angele, P.; Nerlich, M.; Mueller, M. B., TGF-beta Signalling is Suppressed under Pro-Hypertrophic Conditions in MSC Chondrogenesis Due to TGF-beta Receptor Downregulation. Int J Stem Cells 12 (1), 139-150, 2019.
128. Murphy, M. K.; Huey, D. J.; Hu, J. C.; Athanasiou, K. A., TGF-beta1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 33 (3), 762-73, 2015.
129. Kisiday, J. D.; Kopesky, P. W.; Evans, C. H.; Grodzinsky, A. J.; McIlwraith, C. W.; Frisbie, D. D., Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J Orthop Res 26 (3), 322-31, 2008.
130. Guilak, F.; Awad, H. A.; Fermor, B.; Leddy, H. A.; Gimble, J. M., Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41 389-399, 2004.
131. Gao, Y.; Liu, S.; Huang, J.; Guo, W.; Chen, J.; Zhang, L.; Zhao, B.; Peng, J.; Wang, A.; Wang, Y.; Xu, W.; Lu, S.; Yuan, M.; Guo, Q., The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int 2014 648459, 2014.
132. Lee, W. C.; Maul, T. M.; Vorp, D. A.; Rubin, J. P.; Marra, K. G., Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6 (4), 265-273, 2007.
133. Pre, D.; Ceccarelli, G.; Gastaldi, G.; Asti, A.; Saino, E.; Visai, L.; Benazzo, F.; Cusella De Angelis, M. G.; Magenes, G., The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone 49 (2), 295-303, 2011.
134. Huri, P. Y.; Cook, C. A.; Hutton, D. L.; Goh, B. C.; Gimble, J. M.; DiGirolamo, D. J.; Grayson, W. L., Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells. Biochem Biophys Res Commun 438 (1), 180-185, 2013.
135. Chokalingam, K.; Hunter, S.; Gooch, C.; Frede, C.; Florer, J.; Wenstrup, R.; Butler, D., Three-Dimensional In Vitro Effects of Compression and Time in Culture on Aggregate Modulus and on Gene Expression and Protein Content of Collagen Type II in Murine Chondrocytes. TISSUE ENGINEERING: Part A 15 2807-2816, 2009.
136. Li, R.; Liang, L.; Dou, Y.; Huang, Z.; Mo, H.; Wang, Y.; Yu, B., Mechanical stretch inhibits mesenchymal stem cell adipogenic differentiation through TGFbeta1/Smad2 signaling. J Biomech 48 (13), 3665-71, 2015.
137. Zhang, T.; Wen, F.; Wu, Y.; Goh, G. S.; Ge, Z.; Tan, L. P.; Hui, J. H.; Yang, Z., Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials 38 72-85, 2015.
138. Ferguson, C. M.; Schwarz, E. M.; Reynolds, P. R.; Puzas, J. E.; Rosier, R. N.; O'keefe, R. J., Smad2 and 3 Mediate Transforming Growth Factor-b1-Induced Inhibition of Chondrocyte Maturation*. Endocrinology 141 4728-4735, 2000.
139. Lopez-Ruiz, E.; Jimenez, G.; Kwiatkowski, W.; Montanez, E.; Arrebola, F.; Carrillo, E.; Choe, S.; Marchal, J. A.; Peran, M., Impact of TGF-beta family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients. Eur Cell Mater 35 209-224, 2018.
140. Guo, L.; Kawazoe, N.; Fan, Y.; Ito, Y.; Tanaka, J.; Tateishi, T.; Zhang, X.; Chen, G., Chondrogenic differentiation of human mesenchymal stem cells on photoreactive polymer-modified surfaces. Biomaterials 29 (1), 23-32, 2008.
141. Stockl, S.; Bauer, R. J.; Bosserhoff, A. K.; Gottl, C.; Grifka, J.; Grassel, S., Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci 126 (Pt 13), 2890-902, 2013.
142. Yi, S. W.; Kim, H. J.; Oh, H. J.; Shin, H.; Lee, J. S.; Park, J. S.; Park, K. H., Gene expression profiling of chondrogenic differentiation by dexamethasone-conjugated polyethyleneimine with SOX trio genes in stem cells. Stem Cell Res Ther 9 (1), 341, 2018.
143. Hardingham, T. E.; Oldershaw, R. A.; Tew, S. R., Cartilage, SOX9 and Notch signals in chondrogenesis. J Anat 209 (4), 469-80, 2006.
144. Jiang, X.; Huang, X.; Jiang, T.; Zheng, L.; Zhao, J.; Zhang, X., The role of Sox9 in collagen hydrogel-mediated chondrogenic differentiation of adult mesenchymal stem cells (MSCs). Biomater Sci 6 (6), 1556-1568, 2018.
145. Wan, W.; Cheng, B.; Zhang, C.; Ma, Y.; Li, A.; Xu, F.; Lin, M., Synergistic Effect of Matrix Stiffness and Inflammatory Factors on Osteogenic Differentiation of MSC. Biophys J 117 (1), 129-142, 2019.
146. Carrion, B.; Souzanchi, M. F.; Wang, V. T.; Tiruchinapally, G.; Shikanov, A.; Putnam, A. J.; Coleman, R. M., The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment. Adv Healthc Mater 5 (10), 1192-202, 2016.
147. Banks, J. M.; Mozdzen, L. C.; Harley, B. A.; Bailey, R. C., The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells. Biomaterials 35 (32), 8951-9, 2014.
148. Zouani, O. F.; Kalisky, J.; Ibarboure, E.; Durrieu, M. C., Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate. Biomaterials 34 (9), 2157-66, 2013.
149. Brizzi, M. F.; Tarone, G.; Defilippi, P., Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 24 (5), 645-51, 2012.
150. Wang, W.; Caetano, G.; Ambler, W. S.; Blaker, J. J.; Frade, M. A.; Mandal, P.; Diver, C.; Bartolo, P., Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials 9 (12), 1-11, 2016.
151. Xu, J.; Liu, X.; Jiang, Y.; Chu, L.; Hao, H.; Liua, Z.; Verfaillie, C.; Zweier, J.; Gupta, K.; Liu, Z., MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med 12 (6A), 2395-406, 2008.
152. Li, Z.; Kupcsik, L.; Yao, S. J.; Alini, M.; Stoddart, M. J., Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med 14 (6A), 1338-46, 2010.
153. Kisiday, J. D.; Frisbie, D. D.; McIlwraith, C. W.; Grodzinsky, A. J., Dynamic Compression Stimulates Proteoglycan Synthesis by Mesenchymal Stem Cells in the Absence of Chondrogenic Cytokines. TISSUE ENGINEERING: Part A 15 2817-2824, 2009.
154. Michalopoulos, E.; Knight, R. L.; Korossis, S.; Kearney, J. N.; Fisher, J.; Ingham, E., Development of methods for studying the differentiation of human mesenchymal stem cells under cyclic compressive strain. Tissue Eng Part C Methods 18 (4), 252-62, 2012.
155. Huang, A. H.; Farrell, M. J.; Kim, K.; Mauck, R. L., Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur Cell Mater 19 72-85, 2012.
156. Kiefer, J. C., Back to basics: Sox genes. Dev Dyn 236 (8), 2356-2366, 2007.
157. Akiyama, H.; Chaboissier, M. C.; Martin, J. F.; Schedl, A.; Crombrugghe, B. D., The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. GENES & DEVELOPMENT 16 2813-2828, 2002.
158. Lo Furno, D.; Mannino, G.; Cardile, V.; Parenti, R.; Giuffrida, R., Potential Therapeutic Applications of Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 25 (21), 1615-1628, 2016.
159. Estes, B. T.; Wu, A. W.; Guilak, F., Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 54 (4), 1222-32, 2006.
160. Wu, C.; Tian, B.; Qu, X.; Liu, F.; Tang, T.; Qin, A.; Zhu, Z.; Dai, K., MicroRNAs play a role in chondrogenesis and osteoarthritis (review). Int J Mol Med 34 (1), 13-23, 2014.