| 研究生: |
王麗緹 wati, Linda |
|---|---|
| 論文名稱: |
含桂皮酸酯之光致變及熱致變性膽固醇液晶共聚高分子之合成及特性探討 Synthesis and Characterization of Photochromic and Thermochromic Cholesteric Liquid Crystalline Copolymers Based on Cinnamate Ester |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 膽固醇液晶 、光異構化 、熱變色性 、光變色性 |
| 外文關鍵詞: | cholesteric, photoisomerization, thermochromic, photochromic |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中合成一系列具有不同末端基團之液晶單體及具光變色性不同液晶元結構之對掌性單體,並以不同比例進行自由基共聚合反應。利用FT-IR及1H-NMR鑑定各化合物的分子結構,以DSC、TGA及POM進行熱性質分析,並探討此新穎性高分子材料的熱及光學性質。所合成的共聚物皆表現出具有選擇性光反射的膽固醇液晶相,而含-OC4H9末端基團之共聚物則在較低溫度時可顯示層列型液晶相。共聚物中桂皮酸酯(Cinnamate)的光致變基團可藉由UV光的照射而進行E-Z光異構化行為,改變分子結構及其排列,進而影響膽固醇液晶相所表現的選擇性光反射。對於共聚物CP1和小分子液晶E7之混合薄膜所表現的選擇性光反射顏色可依不同混合比例、溫度及UV光照射來進行調變。結果顯示加熱及UV光照射皆會導致反射光波長的藍位移,此現象可歸因於分子螺旋排列的螺距及折射率變化所造成的影響。本研究所合成之熱變色及光變色性共聚物在溫度感測、溫度影像紀錄及光學資訊的不可逆紀錄等應用上具有潛力。
A series of novel liquid crystalline monomers and copolymers with various terminal groups, mesogenic groups and molar ratios were synthesized and both thermal and optical properties were investigated. The chemical structures of the compounds were confirmed by FTIR and 1H-NMR. The mesomorphic properties and phase behaviors were investigated by differential scanning calorimetry, thermogravimetric analyses, and polarized optical microscopy. The copolymers with cyano group show cholesteric phases and the copolymers with butoxy group show smectic and cholesteric phases. Photochromic groups in copolymers contain a C=C double bond capable for undergoing E-Z isomerization during UV irradiation. All of the synthesized CP1 films with different weight ratio of E7 form a cholesteric phase displaying selective light reflection with various λmax depending on the concentration of chiral groups. Heating and UV light irradiation of mixtures lead to a shift of the selective light reflection peak to a short-wavelength spectral region (blue shift). This effect is ascribed to the variation of helical pitch and refractive indices of the mixtures during heating and UV light irradiation. The possible explanations of this phenomenon were suggested. These thermochromic and photochromic copolymers are expected to be use widely in the field of thermal sensing, thermal image recording and irreversible recording of optical information.
[1] M. Brehmer, J. Lub, P. van de Witte. Adv. Matter.,10, 17 (1998).
[2] D. Spiegel. Die Welt, 49, 256 (1997).
[3] T. J. Scheffer. J. Phys. D: Appl. Phys., 8, 1441 (1975).
[4] M. Schadt, J. Fünfschilling, Jpn. J. Appl. Phys., 29, 1974, (1990).
[5] D. J. Broer, J. Lub, G. N. Mol. Nature, 378, 467 (1995).
[6] D. K. Yang, J. L. West, L. C. Chien, J. W. Doane. J. Appl. Phys., 76, 1331 (1994).
[7] R.A. M. Hikmet, H. Kemperman, Nature, 392, 476 (1998).
[8] K. Ichimura, S. Furumi, S. Morino, M. Kidowaki, M. Nakagawa, M. Ogawa, Y. Nishiura. Adv. Mater., 12, 950 (2000)
[9] K. Ichimura, H. Tomita, K. Kudo. Liq. Crystal, 20, 161 (1996).
[10] B. Sapich, J. Stumpe, H. R. Kricheldorf, A. Fritz, A. Schonhals. Macromolecules, 34, 5694 (2001).
[11] M. Obi, S. Morino, K. Ichimura. Macromol. Rapid Comm., 19, 643 (1998).
[12] P. O. Jackson, M. O’neill. Chem. Mater., 13, 694 (2001).
[13] P. J. Collings, M. Hird. Introduction to Liquid Crystal, Taylor & Francis, London (1997).
[14] B. Bahadur. Liquid Crystal Applications and Uses, World Scientific Publishing Co. Pte. Ltd., Singapore (1990).
[15] The Barret Research Group. Introduction to Liquid Crystal. Retrieved May 29th, 2009, from http://barrett-group.mcgill.ca/teaching /LC02.htm
[16] X. J. Wang, Q. F. Zhou. Liquid Crystalline Polymers, World Scientific Publishing Co. Pte. Ltd., Singapore (2004).
[17] G. W. Gray. Thermotropic Liquid Crystal, John Wiley & Sons, New York (1987).
[18] R. B. Alaverdyan, K. R. Allahverdyan, A. H. Gevorgyan, S. Ts. Nersisyan, A. D. Chilingaryan, Y. S. Chilingaryan. Journal of Contemporary Physics Vol. 43, 3, 109 (2008).
[19] J. Lub, W. P. M. Nijssen, R.T. Wegh, J. P. A. Vogels, A. Ferrer. Adv. Funct. Mater., 15, 1961 (2005).
[20] P. Kipfer, R. Klappert, H. P. Herzig, J. Grupp, R. Dandliker. Optical Engineering 41, 3, 638-639 (2002)
[21] Liquid Crystal Institute of Kent State University. Cholesteric Liquid Crystal Reflective Mode. Retrieved May 29th, 2009, from http://www.personal.kent.edu/~mgu/LCD/chlc.htm
[22] A. Chanishvili, G. Chilaya, G. Petriashvili. Physical Review E, 71, 051705 (2005)
[23] U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. Bunning. Adv. Funct. Mater., 17, 1739 (2007)
[24] D. G. McDonell. Thermochromic Cholesteric Liquid Crystal, John Wiley & Sons, New York (1987).
[25] F. Dietz, A. V. El’tsov. Organic Photochromes, Bureau, New York, Chap. 1 (1990).
[26] D. Fanghanel, G. Timpe, V. Orthman. Organic Photochromes, Bureau, New York, Chap. 3 (1990).
[27] P. C. Yang, J. H. Liu. Synthesis and Characterization of Chiral Compounds and Their Applications in Cholesteric Liquid Crystal Devices (1996).
[28] N. Kawatsuki, S. Sakashita, K. Takatani, T. Yamamoto, O. Sangen. Macromol. Chem. Phys., 197, 1919-1920 (1996).
[29] H. Fan, X. Zhu, L. Gao, Z. Li, J. Huang. J. Phys. Chem. B, 112, 10169 (2008).
[30] X. D. Li, Z. X. Zhong, G. Jin, S. H. Lee, M. H. Lee. Macromolecular Research, Vol.14, No.3, 257 (2006).
[31] R. Manohar, J. P. Shukla. Journal of Physics and Chemistry of Solids, 65, 1647 (2004).
[32] H. Yoshida, C. H. Lee, Y. Miura, A. Fujii, M. Ozaki. Applied Physics Letters, 90, 071107 (2007).