| 研究生: |
蕭智隆 Hsiao, Chih-Lung |
|---|---|
| 論文名稱: |
工程碳排放資料分析與計算-以道路工程為例 Carbon emissions data analysis and calculation – A case study of roadway construction |
| 指導教授: |
張行道
Chang, Andrew S. 洪崇展 Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 184 |
| 中文關鍵詞: | 碳排放 、碳排資料表 、資料分析 、碳排計算 、道路工程 |
| 外文關鍵詞: | Carbon footprint, carbon data sheet, data analysis, carbon emission calculation, roadway construction |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來陸續有些道路工程碳排放量計算的研究,但通常都是列出一些碳排計算結果,如材料、運輸、機具等生命週期階段的碳排放,至於計算碳排所需資料的品質,即需要哪些資料,資料是否正確、完整,有何假設等,研究探討的並不多,如此前提未確定,所計算的碳排放量或有高低不同。
本研究分析工程碳排放資料並計算碳排,以道路工程為案例,藉由詳細價目表、單價分析表取得材料數量,提供廠商填寫碳排資料表以取得材料運輸、機具施工及用電用水資料,將價目表工項依性質分成11大項,採用碳排係數法計算各材料、運輸、機具、電水碳排,整理分析材料係數估算情況,比較耗油量及延噸公里兩方法計算的運輸碳排,依進度作業計算載具、機具碳排。
研究結果顯示,本研究找出材料工項的係數分為5種情況,有係數、推估、列入載具/機具、不計、無法計算,其工項金額分別占工程金額之 48.8、5.5、20.1、6.4、7.7 %。推估的組合材料有單純工料組合、工料經換算、含非材料工料3種情況,其中含非材料工料應列入載具/機具碳排,不計碳排的工項有單純人力、可重複使用設施儀器,及費用類3種情況。
案例工程碳排57,125.0 T,其中材料、運輸、機具、電水分別占81.6、0.7、16.9、0.7 %。大工項中,橋梁工程碳排36.9 %最高,道路工程30.3 %次之。運輸碳排以耗油量計算為423.1 T,延噸公里計算為701.3 T,延噸公里較耗油量計算高278.2 T、65.8 %。依進度作業分析機具使用,算出各作業碳排,其中作業1.6橋梁工程產生碳排4,755.9 T、49.2 %最高,全部機具中壓送車占2,910 T、30.1 %最高。
本研究系統化進行資料分析與計算道路工程碳排,整理工程碳排計算的問題,說明資料不足的處理方式,使碳排計算過程清楚,得出的碳排結果較容易驗證。
Recent studies on road construction carbon emissions often focus on life cycle results but overlook data quality issues like accuracy, completeness, and assumptions. Neglecting these premises can cause discrepancies in calculations.
Using a case study, this research derived materials from the Bill of Quantities (BOQ) and unit price analysis sheets, while contractors filled out carbon data sheets for transportation, construction equipment and utility data. Work items were divided into 11 categories. The study applied the Emission Factor Method, analyzed material emission factors, compared fuel consumption versus tonne-kilometer transport methods, and calculated vehicle and equipment emissions based on construction activities.
Results identified five coefficient scenarios: available, estimated, included in vehicle/equipment, excluded, and incalculable, representing 48.8%, 5.5%, 20.1%, 6.4%, and 7.7% of project costs, respectively. Estimated materials included simple, converted, and non-material combinations (the latter categorized under vehicle/equipment). Excluded items comprised manual labor, reusable facilities, and fee-based items.
By systematically analyzing road construction carbon emissions and addressing data deficiencies, this study establishes a transparent calculation process, rendering the results easier to verify.
英文文獻
1.Aryan, Y., Dikshit, A., and Shinde, A. (2023), “A critical review of the life cycle assessment studies on road pavements and road infrastructures,” Journal of Environmental Management, 336:117697.
2.Ashtiani, M., and Muench, S. (2022), “Using construction data and whole life cycle assessment to establish sustainable roadway performance benchmarks,” Journal of Cleaner Production, 380:135031.
3.Atmaca, A., and Atmaca, N. (2022), “Carbon footprint assessment of residential buildings, a review and a case study in Turkey,” Journal of Cleaner Production, 340:130691.
4.Barth, M., Scora, G., and Boriboonsomsin, K. (2008). Evaluating the Emissions from Heavy-Duty Construction Equipment, California Department of Transportation (Caltrans).
5.Bhandari, K., Shukla, A., and Gangopadhyay, S. (2011). “Carbon footprint: a tool to quantify the impact of road construction on the environment,” Journal of the Eastern Asia Society for Transportation Studies, 9(59), 740-755.
6.British Standards Institution. (2011), PAS 2050:2011 Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, London, UK.
7.Bui, B., and Villiers, C. (2017), “Carbon emissions management control systems: Field study evidence,” Journal of Cleaner Production, 166:1283–1294.
8.Cang, Y., Luo, Z., Yang, L., and Han, B. (2020), “A new method for calculating the embodied carbon emissions from buildings in schematic design: Taking ‘building element’ as basic unit,” Building and Environment, 185:107306.
9.Chen, J., Zhao, F., Liu, Z., Ou, X., and Hao, H. (2017), “Greenhouse gas emissions from road construction in China: A province-level analysis,” Journal of Cleaner Production, 168:1039–1047.
10.Chen, Y., Zhang, Y., Yu, Z., and Zhang, J. (2021). "Research on carbon emission differences decomposition and spatial heterogeneity pattern of China's eight economic regions," Environmental Science and Pollution Research.
11.Gao, S., Liu, X., Lu, C., Zhang, H., Wang, X., and Kong, Y. (2024), “Quantitative Analysis of Carbon Emissions from Highway Construction Based on Life Cycle Assessment,” Sustainability, 16(14), 5897.
12.Hu, L., Hu, X., Li, B., Guo, L., Chen, D., Yang, Y., Ma, M., Li, X., Feng, R. and Fang, X. (2024). “Carbon dioxide emissions from industrial processes and product use are a non-ignorable factor in China’ s mitigation,” Commun Earth Environ 5, 800.
13.Hong, J., Shen, G. Q., Feng, Y., Lau, W.S.T., and Mao, C. (2018), "Uncertainty analysis for the carbon footprint of manufacturing the prefabricated concrete pile," Journal of Cleaner Production, 172, 1860-1868.
14.International Organization for Standardization (2018), ISO 14064-1 (2018) Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals,” Geneva, Switzerland.
15.Kanafani, K., Magnes, J., Lindhard, S. M., and Balouktsi, M. (2023). “Carbon Emissions during the Building Construction Phase: A Comprehensive Case Study of Construction Sites in Denmark,“ Sustainability, 15(14), 10992.
16.Keijzer, E. E., Leegwater, G. A., de Vos-Effting, S. E., and de Wit, M. S. (2015) “Carbon footprint of the Dutch road network,” Proceedings of the International Symposium on Pavement LCA 2014, Davis, CA, USA.
17.Khan, A., and Puppala, A. (2022). “Sustainable pavement with geocell reinforced reclaimed-asphalt-pavement (RAP) base layer,” Journal of Cleaner Production, 387. 135802
18.Kim, R., Lim, M. K., Roh, S., and Park, W. J. (2021), “Analysis of the Characteristics of Environmental Impacts According to the Cut-Off Criteria Applicable to the Streamlined Life Cycle Assessment (S-LCA) of Apartment Buildings in South Korea,” Sustainability, 13(5), 2898.
19.Liu, N., Wang, Y., Bai, Q., Liu, Y., Wang, P., Xue, S., Yu, Q., and Li, Q. (2022)“Road life-cycle carbon dioxide emissions and emission reduction technologies: A review,”Journal of Traffic and Transportation Engineering (English Edition),Volume 9, Issue 4, Pages 532-555.
20.Nwakaire, C. M., Yap, S. P., Onn, C. C., Yuen, C. W., and Ibrahim, H. A. (2020). “Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review,” Construction and Building Materials. 235, 1117444.
21.Peng, B., Tong, X., Cao, S., Li, W., and Xu, G. (2020). “Carbon Emission Calculation Method and Low-Carbon Technology for Use in Expressway Construction,” Sustainability, 12(8), 3219.
22.Rahman, M. F. A., Zakaria, R., and Zin, R. (2022), “The Importance of Life Cycle Cost Components for Green Highway and Road Management: A Review,” Journal of Advanced Research in Technology and Innovation Management, Vol. 2, Issue 1, pp. 13–21
23.Sandanayake, M., Zhang, G., and Setunge S. (2019). “Estimation of environmental emissions and impacts of building construction – A review and case study,“ Building and Environment, 153, 23-30.
24.Seo, Youngguk and Kim, Seong-Min (2013). “Estimation of materials-induced CO2 emission from road construction in Korea,“ Renewable and Sustainable Energy Reviews. 26. 625-631. 10.1016/j.rser.2013.06.003.
25.Sepanosian, T., Küpers, X., Joza, P., Massah, F., and Bemthuis, R. (2024). “An IoT-Based Architecture for Real-Time Emission Monitoring at Construction Sites,” 2024 26th International Conference on Business Informatics (CBI), Vienna, Austria, 2024, pp. 139-148.
26.Shen, L., Zhong, S., Elshkaki, A., Zhang, H., and Zhao, J. (2021), “Energy-Cement-Carbon Emission Nexus and its Implications for Future Urbanization in China,” Journal of Sustainable Development of Energy, Water and Environment Systems, 9(2), 1080354.
27.Sizirici, B., Fseha, Y., Cho, C. S., Yildiz, I., and Byon, Y. J. (2021). “A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation,” Materials, 14(20), 6094.
28.UNEP (2025). Global Status Report for Buildings and Construction 2024/25, United Nations Environmental Programme, Paris, France.
29.World Resources Institute & World Business Council for Sustainable Development (2004), The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition), https://ghgprotocol.org/corporate-standard,2025/12/28上網資料
30.Wolf, C., Pomponi, F., and Moncaster, A. (2017), “Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice,” Energy and Buildings, 140:68–80.
31.Wu, P., Xia, B., and Wang, X. (2015), “The contribution of ISO 14067 to the evolution of global greenhouse gas standards—a review,” Renewable and Sustainable Energy Reviews, 47, 142–150.
32.Xu, W., Duan, Z., Wu, L., and Yang, D. (2015) , “Estimation of carbon dioxide emission in highway construction: A case study in southwest region of China,” Journal of Cleaner Production, 87, 579-585.
33.Yang, Y., Cai, X., Ma, X., Yao, G., Lei, T., Tan, H., and Wang, Y. (2025). “Research on an Intelligent Prediction Method for the Carbon Emissions of Prefabricated Buildings During the Construction Stage, Based on Modular Quantification,” Buildings, 15(12), 1997.
34.Zhang, X. and Zhang, X. (2023), “An automated project carbon planning, monitoring and forecasting system integrating building information model and earned value method," Journal of Cleaner Production, Volume 397, 136526.
中文文獻
1.方冠今(2017),為碳足跡計算編制施工預算工項之改善-以港灣工程為例,國立成功大學土木工程研究所碩士論文,台南市。
2.王彥智(2010),營建節能減碳數字的資料品質評估,國立成功大學土木工程研究所碩士論文,台南市。
3.王勝應(2025),應用工程價目表估算建築物碳足跡之適用性探討,國立臺北科技大學環境工程與管理研究所碩士論文,臺北市。
4.台塑(2025),HDPE產品介紹,https://www.fpc.com.tw/fpcw/index.php?op=proL&f=1&s=9,2025年12月18日上網資料。
5.永統交通(2025),貨車規格表,http://www.yungtong.com.tw/pub/frmCarSpec3.aspx,2025年12月11日上網資料。
6.立法院(2023),氣候變遷因應法,全國法規資料庫,立法院,台北市。
7.江采芸 (2024),道路工程金額與碳排之相關性分析,國立成功大學土木工程研究所碩士論文。
8.何臻(2022),道路工程碳排放基線與考量鋪面厚度下之每平方米面積碳排放,國立成功大學土木工程研究所碩士論文。
9.林子言(2021),建立台灣道路的碳足跡基線,國立成功大學土木工程研究所碩士論文。
10.國土署(2021),市區綠道路評估手冊 新建/整建道路,國土署,台北市。
11.國發會(2022),臺灣2050淨零排放路徑及策略總說明,國家發展委員會,台北市。
12.張筱蓉(2015),綠道路指標對應之個案碳排放分析與認證策略,國立成功大學土木工程研究所碩士論文。
13.陳彥豪(2023),碳盤查資料品質評估,國立成功大學土木工程研究所碩士論文。
14.陳俊康(2025),營造工程混凝土施工階段碳足跡之盤查與分析-以兩建案為例,國立高雄科技大學土木工程研究所碩士論文。
15.鄭曜東(2022),營建業碳排放估算與管控系統開發,淡江大學土木工程研究所碩士論文。
16.環保署(2015),焚化底渣再生粒料應用於控制性低強度回填材料( CLSM )使用手冊,環保署,台北市。
17.環保署(2019),碳足跡產品類別規則 ( CFP-PCR ) 基礎建設-道路 Infrastructure-Road,行政院環境保護署,台北市。
18.羅元佑(2016),碳足跡計算假設與流程之建立與印證-以某道路工程為例,國立成功大學土木工程研究所碩士論文。