| 研究生: |
林伯耕 Lin, Po-Keng |
|---|---|
| 論文名稱: |
訊號擷取方式對外腔二極體雷射頻率穩定的影響 Study of Frequency Stabilization of the External Cavity Diode Laser Using Various Method |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 雷射穩頻 、外腔二極體雷射 、銫原子光譜 |
| 外文關鍵詞: | External Cavity Diode Laser, Frequency Stabilization |
| 相關次數: | 點閱:61 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用穩定二極體雷射頻率技術在各研究領域的重要性與日俱增,包括基礎的科學研究與工業應用。我們使用伺服系統來穩定外腔二極體雷射(ECDL),將雷射中心頻率穩定在飽和吸收光譜譜線的峰值上。一般而言,伺服穩頻系統包括兩個部分:第一是取得錯誤訊號(error signal),第二是反饋系統(feedback system)。為了取得錯誤訊息,我們嘗試三種方式,第一種方法,我們驗證一種健全的方式將二極體雷射頻率穩在原子的躍遷譜線上。這種技術是利用Zeeman shift 來產生都普勒增寬原子共振的反對稱訊號,這種穩頻方式可以產生很高的頻率穩定度而且具有很大的捕獲範圍(recapture range),是一種可調變頻率的穩頻方式。第二種方式我們修改傳統的飽和吸收光譜,我們使飽和光交叉兩道探測光產生一夾角,擷取兩道探測光的差值產生錯誤訊息,利用此種穩頻方式不需任何做任何頻率調變(frequency modulation)。第三種方式我們傳送100kHz的正弦波至AOM,進而調變雷射光頻率,這種方式並不需直接調變雷射本身,在取得錯誤訊息後,高頻的部分反饋給雷射電流控制器,低頻的部分反饋給雷射的PZT控制器。
The important of the frequency stabilization of diode laser has been increasing in a wide variety of fields covering the fundamental sciences and practical applications such as MOT and BEC in the atomic physics. We use servo lock system to stabilized our Extended Cavity Diode Lasers (ECDL). We locked the laser frequency to the center of the saturated absorption line. In general, the servo lock system included two parts. One is to obtain the error signals (dispersion-like signals), and the other is the feedback system. In order to derive the error signal, we tried third methods. In the first method, we demonstrate a robust method of stabilizing a diode laser frequency to an atomic transition. This technique employs the Zeeman shift to generate an antisymmetric signal about a Doppler-broadened atomic resonance, and therefore offers a large recapture range as well as high stability. This tunable frequency lock can be constructed inexpensive, requires little laser power, rarely loses lock, and can be extended to other wavelengths by use of different atomic species.For second method, we modify the typical saturated-absorption spectroscopy .We aligned two parallel probe laser beam intersected a pump laser beam at finite crossing angle The dispersion-like signal was obtained from the difference intensities of the two probe lasers passing through the vapour cell. We use this signal to stabilize the laser frequency without any frequency modulation. In the third method, we send 100kHz sin wave signal to the AOM, then we can modulated laser frequency. This method produce no frequency dither in the laser itself. The error signal was feedback to the laser. The high frequency send to injection current to compensate for long-term drifts, the low frequency send to PZT to compensate for short-term drifts/acoustic jitter.
1.B. E. A Saleh and M. C. Teich, “Fundamentals of photonics”, John Wiley&Sons, 1991.
2. M. W. Fleming and A. Mooradian, IEEE J. Quant. Electr. 17, 44
(1981).
3. M. de Labachelerie and P. Cerez, Opt. Comm. 55, 174 (1985).
4. K. C. Harvey and C. J. Myatt, Opt. Lett. 16, 910 (1991).
5. R. Wyatt and W. J. Devlin, Electron. Lett. 16 910 (1991).
6. M. G. Boshier, D. Berkeland, E. A. Hinds and V. Sandoghdar, Opt. Comm. 85, 355 (1991).
7. N. A. Olsson and J. P. Van Der Ziel, J. Lightware Technol. LT-5, 510 (1987).
8. P. Zorabedian and W. R. Trutna Jr, Opt. Lett. 13, 826 (1988).
9. F. Favre, D. L. Guen, J. C. Simon and B. landousies, Electron. Lett. 22 795 (1986).
10. R, Wyatt, Electron. Lett. 21, 658 (1985).
11. J. Harrison and A. Mooradian, IEEE J. Quantu Electron. 25, 1152
(1989).
12. L. A. Glasser, IEEE J. Quantum Electron. OE-16, 525 (1980).
13. K. Vahala, K. Kyuma, A. Yariv, S-K. Kwong, M. Cronin-Golomb and K. Y. Lau, Appl. Phys. Lett. 49, 1563 (1986).
14. P. H. Laurent, A. Clarion and C. H. Breant, IEEE J. Quantum Electron
Lett. 22, 795 (1986).
15. H. Li and H. R. Telle, IEEE J. Quantum Electron. 25, 257 (1989).
16. W. D. Lee, J. C. Campbell, R. J. Brecha and H. J. Kimble, Appl. Phys.
Lett. 57, 2181 (1990).
17. B. Dahmani, L. Hollberg and R. Drullinger, Opt. Lett. 12, 876 (1987).
18. T .P. Dinneen, C. D. Wallace and P. L. Gould, Opt. Comm. 92, 277
(1992).
19. A. Hemmerich, D. H. Mcintyre, D. Schropp Jr, D. Meschede and T. W. Hansch, Opt. comm. 75, 118 (1990).
20. F. Favre and D. L. Guen, IEEE J. Quantum Electron. OE-21, 1937
(1985).
21. Hugene Hecht “Optics” Fourth Edition, Addison Wesley Longman, Inc, 2002.
22. Verdeyen, “Laser Electronics”, Third Edition, Prentice Hall, New Jersey, 1995.
23. Sacher Lasertechnik: Active Stabilisation Use’r Manual: PI1000AS.
24. http://www.exfo.com/en/index.asp.
25. http://www.cohr.com/
26. Wolfgang Demtroder, “Laser Spectroscopy Basic Concepts and Instrumentation”, Second Enlarged Edition, Springer-Verlag Berlin Heidelberg, 1996.
27. Serge Huard “Polarization Of Light”, John Wiley & Sons, 1997.
28. Frank L. Pedrotti, S. J , Leno S Pedrotti “Introduction To Optics”, John Wiley&Sons, 1987.
29. Valeriy Yashchuk, Dmitry Budker, and John Davis, “Laser Frequency Stabilization Using Linear Magneto-Optics: Technical Notes” REPORT LBNL-43523, June , Berkeley, California (1999).
30. Kristan L. Corwin, Zheng-Tian Lu, Carter F. Hand, Ryan J. Epstein, and Carl E. Wieman “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor” Appl Opt. 20 May 1998/l37, No.15.
31. Dmitry Budlker, Donald J. Orlando, and Valeriy Yashchuk“Nonlinear
laser spectroscopy and magneto-optics”, Am. J. Phys. 67,7, July (1999).
32. John David Jackson, “Classical Electrodynamics”, Third Edition, John Wiley&Sons, Inc 1998.
33. Edward M. Purcell, “Electricity AND Magnetism”, Berkeley physics course volume 2, Mc Graw-Hill International Edition 1994.
34. K. B. MacAdam, A. Steinbach,and C.Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb” Am. J. Phys. 60 12, December (1992).
35. Jan Max Walter Kruger “A Novel Technique For Frequency Stabilising Laser Diodes”, University of Otago October (1998).
36. T.Yanagawa, S. Saito, S. Machida, Y. Yamamoto, Y. Noguchi, Appl. phys. lett. 47, 1036 (1985).
37. Y. Sakai, I. Yokohama, G..Kano, S. Sudo, IEEEpoton. Technol. Lett. 4,96 (1991).
38. T. Ikegami, S. Ohshima, M. Ohtsu, Jpn. J. Appl. Phys. 28,101 (1989)
L1839.
39. U. Shim, J. A. Kim, W.Jhe, J. Korean. Phys. Soc. 35 30 (1999).
40. M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 22, 722 (1982).
41. C. Wieman, T. W. Hansch, Phys. Rev. Lett. 36 1170 (1976).
42. F.-L. Hong, A. Onae, H.Matumoto, Jpn. J. Appl. Phys. 39, 1918 (2000).
43. R. N. Li, S. T. Jia, D. Bloch, M. Ducloy, Opt. Comm. 146, 186 (1998)
.
44. J. Vanier, C.Audoin, The Quantum Physics of Atomic Frequency Standard, Philadelphia: Adam Hilger, Bristol, (1989).
45. 蔡建銘, “Frequency Stabilization of Diode Laser by LabVIEW Program”, 國立中興大學物理研究所碩士論文(1999).
46. Thomas Howard Loftus, “Laser Cooing and Traping of Atomic Ytterbium”(A Dissertation) Presented to the Department of Physics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy (June 2001 ).
47. Stephen Dale. “Gensemer.Characterization and Control of Ultracold Collisions” University of Connecticut (2000).
48. Doctoraalscriptie van Stefan Petra “Development of frequency stabilized laser diodes for building a Magneto-Optical Trap” Universiteit van Amsterdam (Augustus1998).
49. R. A. Cornelussen “Atomic Beam preparation Quantum Optics Experiments” Eindhoven University of Technology, Faculty of Applied Physics, Theoretical and Experimental Atomic Physics and Quantum Electronics Group (march 1999).
50. Christopher David Wallace “Measurements of Trap Loss Rate Coefficients and Trap Characteristics of a Rubidium Magneto-Optical Trap” A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy at The University of Connecticut (1994).
51. http://www.minicircuits.com/mixer.html.
52. Diode laser electronics for atom optics, Optics Atom Group, The University of Melbourne,
http://optics.ph.unimelb.edu.au/atomopt/electronics/