簡易檢索 / 詳目顯示

研究生: 于振銓
Yu, Jen-Chiuan
論文名稱: 以交流電控之環狀指叉型電極晶片於生物相關試樣的細菌數量化應用
Using the Ring-shaped Interdigitated Electrode Operated under AC Condition to Quantify Bacteria Number existing in Bio-related Samples
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 49
中文關鍵詞: 水體細菌即刻檢測介電泳力交流電滲流
外文關鍵詞: Instant concentration of bacteria in water, dielectrophoretic force, AC electroosmotic (ACEO) flow
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據養殖產業相關研究,一般當水池中總生菌數超過1x 105 CFU/mL時,會使石斑魚生病、死亡,而造成每年產業上億元的損失。由於早期的傳統塗盤法存在著操作步驟繁瑣且耗時的問題,無法當下針對水產樣本進行即刻檢測判讀。本研究開發一套能提供檢測全程於15分鐘內分三階段完成之即時檢測水體中菌量的裝置。(1)原含菌水體試樣經適當的離心前處理,繼之以0.3 M蔗糖水調製測試液後。(2)即可滴上於環狀指叉形的微影製程技術製作之微小電極濃縮器(RIDE)之檢驗平台,應用微機電之黃光微晶片,當施加特定電壓40 Vpp 與頻率5 kHz之交流訊號於電極上,即可產生連續性流動傳輸之交流電滲透流力(ACEO),遂帶動溶液中的水合離子,而起均往圓心方向的流動,其結果引導細菌向晶片之無電極的中心聚集而利於擷取影像。(3)最終運用ImageJ生物影像軟體來定量檢測分析。本研究已將樣本應用範圍從實驗室自行配液的純弧菌階段,推向從養殖現場所採集之實際水樣本做量化檢驗,迄今的結果顯示已能在5分鐘內達可定量之效果。此外,我們更分別從前處理、晶片設計、後續影像等方面來改善本定量分析,已探討出若含試樣體積在100 µL與含菌量在1x103到1x105 CFU/mL之間與傳統培養法具線性正相關,顯示此系統已能適合應用在養殖漁業水質的總生菌數之檢測上。若系統再施予良好的組裝與自動化精進,檢測全程時間甚可縮短至10分鐘,相較在同範圍濃度的自配液純弧菌總數,誤差約僅有10%的耗損率。藉由此技術的發展,除養殖漁業外,未來將有可能應用需即時檢測,如菌尿症或食品、環境等含細菌數之快速檢驗上。

    According to the research of aquaculture industry. As the total number of bacteria exceeds 1x105 CFU/mL in pound. It would cause the grouper to be sick or dead, even if cause a billion of dollars losses every year in industry. Due to the conventional plate count method that has the complicated and time-consuming operation problem, we cannot detect the sample immediately. In this study, the device is developed to detect the number of bacteria in aqueous solution within 15 min by following three stages. (1) The stock solution of the sample should take pretreatment by centrifugal method and adjust the stock solution to 0.3 M sucrose solution. (2) Then it could be dropped on the test platform of Ring-shaped Interdigitated Electrode (RIDE) of Lithography Instrument and Process to apply on the microelectromechanical microchip. When adding the AC signal (40 Vpp, 5 kHz) on electrode, it would generate the continuity AC electroosmosis (ACEO) to drive the hydrated ion in aqueous solution to guide the bacterial into the electrode center, it’s beneficial to image capture. (3) In final, ImageJ software was utilized for quantitative analysis. In this research, the application field has changed from aquaculture media in laboratory to real sample in fishery. Recently results shows that we could quantify in 5 minutes. Moreover, we improved quantitative analysis by pretreatment, chip design, experimental methods, and image-analyzing. From result, with 100 L volume sample, RIDE system can detect concentration from 1x103 to 1x105 CFU/mL that has a positive linear correlation with cultivation-dependent methods. It shows that the system is able to apply in fishery for quantitative detection of number of bacterial. With well assembly and improved automation in this system, the detecting time could be shortened to 10 minutes. Comparing to the same range concentration for aquaculture media with vibrio count, the attrition rate is just 10%. Besides the fishery, it will be possible to instantly detect bacteria counting, such as bacteriuria, food, or environment, for bacteria count in the future through this technology development.

    Abstract.............I 中文摘要.............II 謝誌.............III Contents.............IV List of Figures.............VI List of Tables.............IX Chapter 1 Introduction.............1 1.1 Background and Motivation.............1 1.2 Theory of Electrokinetics.............3 1.2.1 Dielectrophoresis (DEP)...............5 1.2.2 AC Electrokinetics (ACEO).............5 1.3 Electric double layer (EDL).............6 1.4 Literature Review.............8 1.5 Research Configuration.............10 Chapter 2 Materials and Methods.............12 2.1 Design and Principle of Ring-shaped Interdigitated Electrode (RIDE) Chip.............12 2.2 Micro-fabrication.............14 2.3 Experimental Process.............18 2.4 Pretreatment.............20 2.4.1 Voltage Setup...............21 Chapter 3 Results and Discussion.............23 3.1 Materials and equipment.............23 3.2 Experimental Parameters Setup.............24 3.2.1 Frequency Setup.............24 3.3 Experimental Result with Centrifuge Pretreatment .............25 3.4 Experimental Result with real sample.............33 3.4.1 Experimental Result with system water............33 Chapter 4 Conclusion and Prospective.............44 4.1 Conclusion and prospective.............44 References.............45

    [1]Alshareef, M., Metrakos, N., Juarez Perez, E., Azer, F., Yang, F., Yang, X., & Wang, G. (2013). Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics, 7(1), 11803.
    [2]Bajwa, A., Tan, S. T., Mehta, R., & Bahreyni, B. (2013). Rapid detection of viable microorganisms based on a plate count technique using arrayed microelectrodes. Sensors (Basel), 13(7), 8188-8198.
    [3]Bernini, R., De Nuccio, E., Brescia, F., Minardo, A., Zeni, L., Sarro, P. M., . . . Scarfi, M. R. (2006). Development and characterization of an integrated silicon micro flow cytometer. Analytical and Bioanalytical Chemistry, 386(5), 1267-1272.
    [4]Alshareef, M., Metrakos, N., Juarez Perez, E., Azer, F., Yang, F., Yang, X., & Wang, G. (2013). Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics, 7(1), 11803.
    [5]Bajwa, A., Tan, S. T., Mehta, R., & Bahreyni, B. (2013). Rapid detection of viable microorganisms based on a plate count technique using arrayed microelectrodes. Sensors (Basel), 13(7), 8188-8198.
    [6]Bernini, R., De Nuccio, E., Brescia, F., Minardo, A., Zeni, L., Sarro, P. M., . . . Scarfi, M. R. (2006). Development and characterization of an integrated silicon micro flow cytometer. Analytical and Bioanalytical Chemistry, 386(5), 1267-1272.
    [7]Hong, F. J., Cao, J., & Cheng, P. (2011). A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. International Communications in Heat and Mass Transfer, 38(3), 275-279.
    [8]Inatomi, K. I., Izuo, S. I., & Lee, S. S. (2006). Application of a microfluidic device for counting of bacteria. Letters in Applied Microbiology, 43(3), 296-300.
    [9]Jen, C.-P., Chang, H.-H., Huang, C.-T., & Chen, K.-H. (2012). A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsystem Technologies, 18(11), 1887-1896.
    [10]Junya Suehiro, R. Y., Ryo Hamada and, & Hara, M. (1999). Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. Applied Physics, 32, 2814-2820.
    [11]Kikutani, T., Tamura, F., Takahashi, Y., Konishi, K., & Hamada, R. (2012). A novel rapid oral bacteria detection apparatus for effective oral care to prevent pneumonia. Gerodontology, 29(2), e560-565.
    [12]Mandy, F. F., Bergeron, M., & Minkus, T. (1995). <Principles of Flow Cytometry.pdf>.
    [13]Mpholo, M., Smith, C. G., & Brown, A. B. D. (2003). Low voltage plug flow pumping using anisotropic electrode arrays. Sensors and Actuators B: Chemical, 92(3), 262-268.
    [14]N. G. Green, A. R., A. Gonza´lez, H. Morgan, and A. Castellanos. (2000). Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Physical Review E, 61(1), 4011-4018.
    [15]Park, S., Zhang, Y., Wang, T. H., & Yang, S. (2011). Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip, 11(17), 2893-2900.
    [16]Sakamoto, C., Yamaguchi, N., Yamada, M., Nagase, H., Seki, M., & Nasu, M. (2007). Rapid quantification of bacterial cells in potable water using a simplified microfluidic device. Journal of Microbiological Methods, 68(3), 643-647.
    [17]Shim, S., Stemke-Hale, K., Tsimberidou, A. M., Noshari, J., Anderson, T. E., & Gascoyne, P. R. (2013). Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis. Biomicrofluidics, 7(1), 011807.
    [18]Wang, J.-H. (2013). Master thesis of BME, NCKU, "Study on a Ring-shaped Interdigitated Electrode Controlled by AC Electrokinetic for Concentrating Bio-particles". Chapt 2, 17-24
    [19]Wang, Z., Han, T., Jeon, T.-J., Park, S., & Kim, S. M. (2013). Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device. Sensors and Actuators B: Chemical, 178, 683-688.
    [20]Wu, Y., Xue, P., Kang, Y., & Hui, K. M. (2013). Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers.
    [21]Zhang, C., Khoshmanesh, K., Mitchell, A., & Kalantar-Zadeh, K. (2010). Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396(1), 401-420.
    [22]Squires, T. M., (2009). "Induced-charge electrokinetics: fundamental challenges and opportunities." Lab on a Chip, 9, 2477-2483. Salieb-Beugelaar, G. B. et al., (2010). "Latest Developments in Microfluidic Cell Biology and Analysis Systems." Analytical Chemistry, 82, 4848-4864.
    [23]Wong, P. K. et al., (2004). "Electrokinetic bioprocessor for concentrating cells and molecules." Analytical Chemistry, 76, 6908-6914.
    [24]Bernini, R. et al., (2006). "Development and characterization of an integrated silicon micro flow cytometer." Analytical and Bioanalytical Chemistry, 386, 1267-1272.
    [25]Inatomi, K. I. et al., (2006). "Application of a microfluidic device for counting of bacteria." Letters in Applied Microbiology, 43, 296-300.
    [26]Sakamoto, C. et al., (2007). "Rapid quantification of bacterial cells in potable water using a simplified microfluidic device." Journal of Microbiological Methods, 68, 643-647.
    [27]Scott, R. et al., (2008). "Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter." Review of Scientific Instruments, 79, 046104.
    [28]Chen, H. T. et al. (2009). "Optical microflow cytometer for particle counting, sizing and fluorescence detection." Microfluidics and Nanofluidics, 6, 529-537.
    [29]Nieuwenhuis, J. H. et al. (2004). "Integrated Coulter counter based on 2-dimensional liquid aperture control." Sensors and Actuators B-Chemical, 102, 44-50.
    [30]Cheung, K. et al. (2005). "Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation." Cytometry Part A, 65A, 124-132
    [31]Simonnet, C. et al., (2006). "High-throughput and high-resolution flow cytometry in molded microfluidic devices." Analytical Chemistry, 78, 5653-5663.
    [32]Rodriguez-Trujillo, R. et al., (2007). "Low cost micro-Coulter counters with hydrodynamic focusing." Microfluidics and Nanofluidics, 3, 171-176.
    [33]Probstein, R. F., ed., (1994). "Physicochemical hydrodynamics: an introduction." 2nd ed., Wiley-Interscience. p.195.
    [34]Chang, H. C., ed., (2010). "Electrokinetically driven microfluidics and nanofluidics." 1st ed. Cambridge University Press.
    [35]Jacob, H. M., ed., (2006). "Electrokinetic and colloid transport phenomena."Wiley-Interscience p. 222.
    [36]Gagnon, Z. et al., (2010). "Integrated AC electrokinetic cell separation in a closed-loop device." Lab on a Chip, 10, 718-726.
    [37]Minerick, A. R. et al., (2002). "Electrokinetic transport of red blood cells in microcapillaries." Electrophoresis, 23, 2165-2173.
    [38]Green, N. G. et al., (2000). "Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements." Physical Review E, 61, 4011-4018.
    [39]Morgan, H. et al., (2003). "AC Electrokinetics: colloids and nanoparticles." (1st ed.). Williston, VT USA: Research Studies Press LTD.
    [40]Pohl, H. A. ed., (1951). "The motion and precipitation of suspensoids in divergent electric fields." Journal of Applied Physics, 22 (7), 869-871.
    [41]Pohl, H. A. ed., (1978). "Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields." 1st ed., Cambridge University Press.
    [42]Cheng, I. F. et al., (2007). "An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting." Bionmicrofluidics, 1, 021503.
    [43]Elizabeth, M. M. et al., (2011). "On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes." Biomicrofluidics, 5, 034113.
    [44]Hyundoo, H. et al., (2008). "Rapid and selective concentration of microparticles in an optoelectrofluidic platform." Lab on a Chip, 9, 199–206.
    [45]Sin, M. L. Y. et al., (2009). "Active Manipulation of Quantum Dots using AC Electrokinetics" Journal of Physical Chemistry C, 113, 6561–6565.
    [46]Urbanski et al., (2006). "Fast ac electro-osmotic micropumps with nonplanar electrodes." Applied Physics Letters, 89, 143508.
    [47] Jonghyun Oh et al., (2009). "Behavior of particles under non-uniform AC electric fields - castellated labeled sequence" Lab Chip, 9, 62-78.

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE