| 研究生: |
黃育賢 Huang, Yu-Shian |
|---|---|
| 論文名稱: |
氮化鋁陶瓷材料之微波燒結研究 A Study on Microwave Sintering of AlN Ceramic Material |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 微波 、燒結 、氮化鋁 |
| 外文關鍵詞: | AlN, Sintering, Microwave |
| 相關次數: | 點閱:65 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用單模腔之微波燒結爐進行高熱傳導氮化鋁陶瓷材料的燒結,並針對本實驗室燃燒合成法(SHS)製備之氮化鋁粉體與微波快速加熱節省能源的優點,探討氧化釔、氧化鈣、氧化鏑、氧化銣以及氧化釤等助劑在固定溫度下對氮化鋁材料燒結性質的影響,包括收縮行為、燒結體密度、二次相組成、微結構和熱傳導值等。後續並在還原氣氛當中改變時間進行熱處理,觀察氧含量、密度、二次相的分布以及熱傳導值提升等等之改變。研究中發現當以5wt%氧化鏑作為燒結助劑時,於1830℃燒結30 分鐘後可以的到最高的熱傳導值155.4W/mK,再經1830℃熱處理180 分鐘後,可以得到更高的熱傳導值約228 .139W/mK,而其他助劑也可得到不錯的熱傳導值,如:氧化釔的218.069 W/mK、氧化銣的220.33 W/mK、氧化釤的216.087 W/mK 以及氧化鈣的170.147 W/mK。
The single-mode microwave furnace was used to sinter high thermal conductivity AlN ceramics.The effects of Y2O3,CaO, Dy2O3, Nd2O3,and Sm2O3 as additives on the densification, phase distribution,microstructure, and thermal conductivity were studied by using SHS-produced AlN powder and microwave sintering with the advantages of fast heating and saving energy.The changes of densification, phase distribution , microstructure,and thermal conductivity were studied by microwave reheating the sintered specimen under the reducing atmosphere.
A highest thermal conductivity of 155.4 W/mK was achieved with a sintering temperature of 1830℃,soaking time of 30 minutes ,and 5wt% of Dy2O3 . The thermal conductivity could be further significantly improved to 228 W/mK by microwave reheating process. The other AlN samples with the other additives also could get fine thermal conductivities,among others; 218.069 W/mK with 5wt% of Y2O3 , 220.33 W/mK with 5wt% of Nd2O3, 216.087 W/mK with 5wt% of Sm2O3,and 170.147 W/mK with 3wt% of CaO.
1 . L. M. Sheppard, Ceram. Bull., 69, 1801 (1990)
2 . B. H. Mussler, Ceram. Bull., 79, 45 (2000)
3. F. J.-M. Haussonne, Mater. Manuf. Processes, 10, 717 (1995)
4. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463 (1993)
5. J. Subrahmanyam, and M. Vijayakumar, J. Mater. Sci., 27, 6249 (1997)
6. C. N. Lin and S. L. Chung, J. Mater. Res., 16, 2200 (2001)
7. C. N. Lin and S. L. Chung, J. Mater. Res., 16, 3518 (2001)
8. C. N. Lin, and S. L. Chung, J. Mater. Res. 19, 3037 (2004)
9. J. F. Crider, “Self-propagating High Temperature Synthesis-A
Soviet Method for producing Ceramic Materials”, Ceram. Eng. Sci.
Proc., 3,519, (1982).
10. S. Kumar, Key Engineering Materials, 56, 183, (1991).
11. A. G. Merzhanov, “Self-Propagating High Temperature
Synthesis: Twenty Years of Search and Findings”, In Combustion
and Plasma Synthesis of High-Temperature Materials, edited byZ.A.
Munir and J.B. Holt, VCH, New York, USA, 1, (1990).
12. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463, (1993).
13. Z. A. Munir, “Synthesis of High Temperature Materials by
Self-Propagating Combustion Methods”, Ceram. Bull., 67, 342,
(1988)
14.汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)。
15.黃昌偉, “陶瓷材料之熱性質分析”, 精密陶瓷特性及檢測分析
,10,1,54.
16. H. K. Sander, “High-tech Ceramics”, C&E News, July 9, (1984)
17.W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on
AlN Powder and Its Effect on the Thermal Conductivity of AlN
Ceramics”, Journal of Materials Synthesis and Processing, 3, 39,
(1995)
18.劉岐山, “微波能應用”, 電子工業出版社, (1990)
19. E. T. Thostentson, and T. -W. Chou, “Microwave processing:
fundamentals and applications ”, Composites: Part A 30, 1055, (1999)
20. Roussy and J. A. Pierce, Foundations and industrial applications
of microwave and radio frequency fields, Wiely (1980)
21. R. E. Collin, Foundations for microwave engineering, McGraw Hill
(1966)
22. P. O. Risman, T. Ohlsson and B. Wass, J. Microwave power and
electromagnetic energy, 22, 193 (1987)
23. V. N. Tran, Microwaves: theory and application in materials
processing, ceramic transactions, Proceedings of the symposium
during 93rd annual meeting of American Ceramic Society, 683 (1991)
24. M. A. Janney, C. L. Calhoun and H. D. Kimrey, J. Am. Ceram.
Soc.,75, 314 (1992)
25 M. Mizuno, S. Obata, S. Takayama, S. Ito, N. Kato, T. Hirai and M.
Sato, J. Euro. Ceram. Soc., 24, 387 (2004)
26. Liu, “Low-temperature sintering of aluminum nitride with
YF3-CaF2 binary additive.”, Journal of Materials science letters,
18,703,(1999).
27. M. A. Janny and H. D. Kimrey, Mater. Res. Soc. Proc., 189, 215
(1991)
28. D. A. Lewis, Mater. Res. Soc., Proc., 269, 21 (1992)
29. M. A. Janny, C. L. Calhoun and H. D. Kimrey, Ceram. Trans.,
21, 311(1991)
30. M. A. Janny and H. D. Kimrey, Ceramic Powder Science, vol. II,
American ceramic Society, 919 (1988)
31. Z. Fathi, I. Ahmed J. H. Simmons, D. E. Clark and A. R. Loding,
Ceram. Trans., 21, 623 (1991)
32. J. H. Brooske, R. F. Cooper, I. Dobson and L. McCaubhan, Ceram.
Trans., 21, 185 (1991)
33. S. Freeman, J. H. Booske, R. F. Cooper, B. Meng, J. Kieffer and B. J.
reardon, Proceedings of the workshop on microwave-absorbing
materials for accelerators, Newport News (1993)
34. J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G.
Dimitrakis and T. E. Cross, J. Am. Ceram. Soc., 89, 1977 (2006)
35. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J.
Phys. Chem. Solids, 48, 641 (1987)
36. K. Momeya and H. Inoue, Yogyo-Kyokai-Shi, 77, 30 (1969)
37. R. M. German, Liquid Phase Sintering, Plenum, New York, (1985)
38.謝承佑,"氮化鋁粉體水解性質探討與抗濕技術開發",成功大
學碩士論文 (2002)
39. K. Watari, H. J. Hwang, M. Toriyama and S. Kanzaki, J. Am. Ceram.
Soc., 79, 1979 (1996)
40. J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder
Electronic Applications”, JOM, 56 (1998)
41. K. Watari, Hae J. Hwang, Motohiro Toriyama, and Shuzo
Kanzaki, J. Mater. Res., 14, 1409 (1999)
42. K. Komeya, H. Inoue and A.Tsuge, Yogyo-Kyokai-Shi, 89, 330(1981)
43. Y. Kurokawa, K. Utsumi and H. Takamizawa, J. Am. Ceram. Soc.,
71,588 (1988)
44. R. Lee, J. Am. Ceram. Soc., 74, 2242 (1991)
45. K. Watari, M. Kawamoto and K. Ishizaki, J. Mater.
Sci., 6, 4727(1991)
46. H. Yan, W. R. Cannon and D. J. Shanefield, J. Am. Ceram. Soc.,
76,166 (1993)
47. N. Ichinose, Mater. Chem. Phys., 42, 176 (1995)
48. K. Watari, K. Ishizaki, T. Hamasaki and T. Fuyuki,
Yogyo-Kyokai-Shi,96, 1066 (1988)
49. K. Watari, M. Cecilia, M. Brito, M. Toriyama and S. Kanzaki, J. Am.
Ceram. Soc., 79, 3103 (1996)
50. T. B. Jackson, A. V. Virkar, K. L. More and R. B. Dinwiddie Jr., J.Am.
Ceram. Soc., 80, 1421 (1997)
51. R. Terao, J. Tatami, T. Meguro and K. Komeya, J. Euro. Ceram.
Soc.,22, 1051 (2002)
52. X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang and X. Fu, Mater. Sci.
Eng.,A342, 104 (2003)
53. Xueli Du.,Mingli Qin ,Akhtar Farid,Islam S. Humali ,Xuanhui Qu
Materials Science and Engineering A 460-461(207)471-474
54.G. Pezzotti, A. Nakahira and M. Tajika, J. Euro.
Ceram. Soc., 20,1319 (2000)
55. N. S. VanDamme, S. M. Richard and S. R. Winzer,
J. Am. Ceram. Soc., 72, 1409 (1989)
56. I. Haase, U. Schneider and W. Winkler, Scientific Forum, 70,
404(1993)
57. T. B. Troczynski and P. S. Nicholson, J. Am. Ceram. Soc., 72,
1488(1989)
58. E. Streicher, T. Chartier, P. Boch, M. Denanot and J. Rabier, J. Euro.
Ceram. Soc., 6, 23 (1990)
59. P. S. de Baranda, A. K. Knudsen and E. Ruh, J. Am. Ceram. Soc.,
76, 1761 (1993)
60. A. Geith, M. Kulig, T. Hofmann and C. Russel, J. Mater. Sci., 28, 865
(1993)
61. Y. Liu, Y. Wu and H. Zhiu, Mater. Lett., 35, 232 (1998)
62. L. Qiao, H. Zhou, H. Xue and S. Wang, J. Euro. Ceram. Soc.,
23,61(2003)
63. P. S. de Baranda, A. K. Knudsen and E. Ruh, J. Am. Ceram. Soc.,
76,1751 (1993)
64.P. B. Dunscombe, ”Heat Production in Microwave–Irradiated
Thermocouples ”,Med. Phys.,13,457,(1986)
65. E. Olmstead, ”A Model for Thermocouple Sensitivity during
Microwave Heating ”, Int. J. Heat Mass Transfer. ,40,1559, (1997).
66. T. B. Jackson, and Raymond A. Cutler Ceram. Soc., 72, 2031-42 (1989)
67. Robert.Roth,Taki Negus,and Lawrence P.Cook ”PHASE DIAGRAM For CERAMICS”