簡易檢索 / 詳目顯示

研究生: 紀翔閎
Chi, Hsiang-Hung
論文名稱: 連管風洞之馬赫2流場校驗
Flow Field Calibration of a In-house Designed Direct Connected-pipe Wind Tunnel
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
中文關鍵詞: 超音速氣流連管風洞皮托管校正
外文關鍵詞: supersonic wind tunnel, calibration, pitot tube
相關次數: 點閱:116下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標為校驗本研究室建立之下吹式馬赫2連管風洞,風洞應用高壓氣源通過蓄熱式加熱器將空氣加熱至780 K作為實驗所需之高焓氣流,經由穩流段、噴嘴進入測試段(7cm×7cm)。風洞校驗將分成三個部分進行,第一部分為測試流場建壓與建溫時間,實驗結果得出風洞建壓時間約200秒,熱流實驗壓力爬升時間較快,但是氣流溫度爬升至780 K的時間較慢,因此冷、熱流實驗建壓時間大致相同;第二部分使用皮托管進行流場速度分布與均勻度的量測,有別於皮托管在次音速的量測,本研究為避免超音速氣流產生的震波影響量測,將分成量測自由流全壓的全壓管及自由流靜壓的壁面量測孔去計算流場馬赫數。此外為不同實驗需求設計全壓管外型,量測流場截面均勻度設計L-type外型以及量測流動角度的C-type外型,流場截面受可拆式壁面限制,流場截面大小設定為4 cm*4 cm的量測面積。流動角度則量測同一個點在不同角度的全壓,以獲得正對氣流的氣流角度。實驗結果顯示熱流裝設整流板的截面平均馬赫數約1.9±0.02,冷流平均馬赫數為1.88±0.02,最大截面誤差皆在3%內,因此推測截面相當均勻,且熱流的流場馬赫數較冷流高。而從流動角度的結果得出氣流偏移角度約在1-2度左右,推測為流場內馬赫波之影響;第三部分為使用視流紋影法觀測測試段流道內之超音速流場現象。從結果發現流道內有斜震波,經分析推測主要為噴嘴產生之馬赫波,且尚未發現明顯與邊界層交互作用的現象,因此認為流道內現象主要受馬赫波影響且仍為超音速氣流。

    This thesis aims to calibrate the In-house designed direct connected-pipe wind tunnel, which is composed of settling chamber, nozzle and test section of 49 square centimeters. This study uses two different shape of pitot tubes to measure the pressure and using flow visualization to obtain various flow field conditions. Since the blunt object in the supersonic airflow will produce a bow shock at its front to affect the measured pressure, so this thesis study uses the total pressure after the shock wave measured by the pitot tube and the static pressure at the wall surface to calculate the Mach number.
    L-type pitot tube measures the uniformity of the flow field cross-section in the wind tunnel and analyze the Mach number distribution of the measured points, from the results that the average Mach number in the cross-sectional measurement range is 1.90. The C-type pitot tube is used to measure the flow angle. It is considered that the air flow is affected by the Mach wave. The visualization of the flow field uses the Schlieren method to observe the shock wave distribution and boundary layer thickness . The experimental analysis results show that the oblique shock wave in the test section is mainly the Mach wave generated by the nozzle, and it has not yet been seen obviously interacted with the boundary layer. Therefore, it is believed that the distribution of the flow field in the Direct Connected-pipe wind tunnel is mainly affected by the Mach wave in the flow field.

    目錄 摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機與目的 7 第二章 研究設備 9 2-1 超音速連管風洞 9 2-1-1 氣體供給系統 9 2-1-2 空氣預熱系統 10 2-1-3 連管風洞設備 10 2-2 移動平台系統 11 2-3 影像拍攝系統 11 2-4 訊號擷取系統 11 第三章 研究方法 13 3-1 超音速噴嘴後流場模擬觀察 13 3-2 壓力量測方法 14 3-2-1 壓力量測墊片 14 3-2-2 壓力量測管 14 3-2-3 實驗操作參數 15 3-2-4 瑞里皮托管理論 15 3-2-5 訊號分析方法 18 3-3 視流紋影法 18 3-4 溫度量測方法 19 第四章 實驗結果與討論 20 4-1 噴嘴初步模擬與入口條件量測 20 4-2 實驗條件初步校驗 21 4-3 壓力量測觀察結果 23 4-3-1 L-type全壓管之流場截面量測 23 4-3-2 C-type全壓管之流動角度量測 24 4-3-3壓力量測管觀察比較 25 4-4 流場條件與視流影像觀察結果 26 4-4-1流場下游變化觀察 26 4-4-2流場視流影像分析 27 4-4-3上游整流現象觀察 28 第五章 結論與未來工作 29 參考文獻 31 附錄 59

    參考文獻
    1.Beastall, D.,W. T. L. a., 1954, “Calibration of the R.A.E. No.18 (9 in.x 9 in.) Supersonic Wind Tunnel Part 1.Preliminary Investigations.” Aeronautical Research Council, p. 4
    2.Pope, A., 1961,“Wind-Tunnel Calibration Techiques,” North Atlantic Treaty Organization, Advisory Group for Aeronautical Research and Development.
    3.Goodyer, M. J., 1975, “ A New Probe for the Direct Measurement of Stagnation Pressure in Supersonic Flow,”Aeronautical. Research Council, Reports and Memoranda.
    4.Couch, L. M., and Langley Research, C., 1975, “Effects of geometric variables on the performance of a probe for direct measurement of free-stream stagnation pressure in supersonic flow.” Washington, D.C. : [Springfield, Va.: National Aeronautics and Space Administration ; For sale by the National Technical Information Service].
    5.Gracey, W., 1956, “Wind-Tunnel Investigation of a Number of Total-Pressure Tubes at High Angles of Attack: Subsonic, Transonic, and Supersonic Speeds,” University of North Texas Libraries, Digital Library , p. 10.
    6.Quincey, V. G., and Callinan, J., 1963, “Experiments with a Pitot Rake at M = l·60,” The Journal of the Royal Aeronautical Society Vol. 67, No. 636, pp. 793-795.
    7.Pinckney, S. Z., 1975, “A short static-pressure probe design for supersonic flow.”
    8.Holder, D.W.,R. J. N. a. A. C., 1950, “Experiments with static tubes in a supersonic airstream -- parts 1 and 2,” Aeronautical Research Council, p. 16.
    9.Shaw, R., 1960, “The influence of hole dimensions on static pressure measurements,” Journal of Fluid Mechanics Vol. 7, No. 4, pp. 550-564.
    10.McKeon, J., B., and Smits, 2002, “A. Static pressure correction in high Reynolds number fully developed turbulent pipe flow,”.
    11.Rayle, R. E., 1949, “An investigation of the influence of orifice geometry on static pressure measurements,” Mechanical Engineering. Massachusetts Institute of Technology.
    12.Winkler, E. M., 1954, “Stagnation Temperature Probes for Use at High Supersonic Speeds and Elevated Temperatures.” Aeroballistic Research Report, p. 44.
    13.Goldstein, L., D., and Scherrer, R., 1949, “Design and Calibration of a Total-Temperature Probe for Use at Supersonic Speeds” Ames Aeronautical Laboratory Moffett Field,Calif.

    下載圖示 校內:2021-08-27公開
    校外:2022-08-27公開
    QR CODE