| 研究生: |
李日晟 Lee, Ri-Sheng |
|---|---|
| 論文名稱: |
應用PIV量測波浪通過彈性透水潛堤之流場特性研究 Apply PIV Measurements on Flow Field of Waves Propagating over Submerged Porous Elastic Breakwaters |
| 指導教授: |
許泰文
Hsu, Tai-Wen 藍元志 Lan, Yuan-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 彈性透水材質 、相鄰潛堤 、質點影像測速(PIV) |
| 外文關鍵詞: | elastic porous materials, adjacent breakwaters, PIV(Particle Image Velocimetry) |
| 相關次數: | 點閱:84 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要應用質點影像測速(Particle Image Velocimetry,PIV)量測波浪通過彈性透水潛堤之流場特性變化,並利用波高計紀錄分析波浪通過結構物之透過率與反射率;同時將PIV量測之速度場,分析平均速度、渦度、流線、水平流速剖面、紊流動能及最大渦度質等特性。
本研究實驗模型主要包括兩大類六種潛堤,PIV量測分析對象為:(1)第一大類:相同材質之相鄰彈性透水潛堤及單一彈性透水潛堤,針對堤寬改變,對流場變化進行量測與分析;(2)第二大類:不同材質之相鄰彈性透水潛堤,改變前後位置,對流場的變化進行量測與分析。同時量測波浪通過各模型時波浪的反射率與透過率,並將分析結果與Lan et al.(2011;2012)所提理論解析解比較,呈現有良好的一致性。此外,PIV量測結果顯示,當波浪通過相同材質堤寬不同之相鄰與單一彈性透水潛堤時,結構物擺動越明顯,紊流動能變化與渦流的發展較為明顯受影響,且堤寬較大時,結構物堤頂靠近上游側之紊流動能變化也越大。試驗結果顯示,相鄰彈性透水潛堤與剛性不透水潛堤之不同材質組合,彈性透水潛堤不論放在何處皆會對附近的渦流與紊流動能產生影響。
This thesis investigates the measurement of wave reflection and transmission as well as characteristics of flow field using wave gauge and PIV(Particle Image Velocimetry). The flow field including the instantaneous horizontal velocity profile, the average velocity, turbulent kinetic energy(TKE), streamline and the maximum vorticity were analyzed based on dataset measured by PIV technique.
This study focuses on the effect of changes submerged adjacent breakwaters and single breakwater widths, materials and shapes of breakwaters on wave transformation and flow field for wave propagating over elastic breakwaters. The experimental result of wave reflection and transmission is in good agreement with analytic solutions of Lan et al. (2011 ; 2012). Moreover, experimental analysis show that different widths of single materials between two adjacent and single permeable breakwaters have significant effects on TKE and vorticity due to movement of structures. It is also found that the TKE becomes larger on the top of breakwaters nearby the upstream side when the width of the breakwaters increases. Different shapes or single breakwaters appear to influence characteristics of flow field.
1. Abdelrhman, M. A., Effect of eelgrass Zostera marina canopies on flow and transport. Marine Ecology-Progress Series, Vol. 248, pp.67-83. (2003)
2. Adrian, R. J., and Yao, C. S., Pulsed laser technique application to liquid and gaseous flows and the scattering power of speed materials. Applied Optics, Vol.24(1), pp.44-52. (1985)
3. Augustin, L. N., Irish, J. L., and Lynett, P.. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coastal Engineering, Vol.56(3), pp.332-340. (2009)
4. Chang, K. A., and Liu, P. L. F., Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids, Vol.11(11), pp.3390-3400. (1999)
5. Chang, K. A., Hsu, T.-J., and Liu, P. L. F., Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves. Coastal Engineering, Vol.44,pp.13-36 (2001)
6. Chang, K. A., Hsu, T. J., and Liu, P. L. F., Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part II: Cnoidal waves. Coastal Engineering, Vol.52(3), pp.257-283. (2005)
7. Dalrymple, R. A., Losada, M. A., and Martin, P. A., Reflection and Transmission from Porous structures under oblique wave attack. Journal of Fluid Mechanics, Vol.224, pp.625-644. (1991)
8. Fonseca, M. S., Fisher, J. S., Zieman, J. C., and Thayer, G. W., Influence of the seagrass, zostera-marinal, on current flow. Estuarine Coastal and Shelf Science, Vol.15(4), pp.351-364. (1982)
9. Ghisalberti, M., and Nepf, H. M., Mixing layers and coherent structures in vegetated aquatic flows. Journal of Geophysical Research-Oceans, 107(C2). (2002)
10. Ghisalberti, M., and Nepf, H..M, Shallow Flows Over a Permeable Medium: The Hydrodynamics of Submerged Aquatic Canopies. Transport in Porous Media, Vol.78(3), pp.385-402. (2009)
11. Goda,Y. and Suzuki,Y., Estimatiom of incident and reflected wave experiments. Proceeding 15th Coastal Engineering Conference,pp.828-845.(1976)
12. Grant, I., Particle image velocimetry: A review. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, Vol.211(1), pp.55-76. (1997)
13. Huang, C. J., Chang, H. H., and Hwung, H. H. Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, Vol.49(1-2), pp.1-24. (2003)
14. Ijima, T., Uwatoko, T., Ushifusa, Y., and Kojima, H. Experiments on the improvement of wave interception effect of sea-balloon breakwater. Memoirs of the Faculty of Engineering Kyushu University, Vol.6, pp.193-206. (1986)
15. Jung, K. H., Chang, K.-A., and Huang, E. T., Two-dimensional flow characteristics of wave interactions with a free-rolling rectangular structure. Ocean Engineering, Vol.32(1), pp.1-20. (2005)
16. Koutandos, E. V., and Prinos, P. E., Hydrodynamic characteristics of semi-immersed breakwater with an attached porous plate. Ocean Engineering,Vol. 38(1), pp.34-48. (2011)
17. Lai, J.-W., Lan, Y.-J., Hsu, T.-W., Ting, C.-H., and Chang, C.-C., Application of Digital Image Process on Observing the Motions of Wave and a Series of Poro-elastic Submerged Breakwaters. Proceedings of coastal dynamics, pp. 1-13. (2009)
18. Lan, Y. J., and Lee, J. F., On waves propagating over a submerged poro-elastic structure. Ocean Engineering, Vol.37(8-9), pp.705-717. (2010)
19. Lan, Y. J., Hsu, T. W., Lai, J. W., Chang, C. C., and Ting, C. H., Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters. Wave Motion, Vol.48(1), pp.1-12. (2011)
20. Lan, Y. J., Hsu, T. W., and Chen, C. Y., On propagating over closely adjacent poro-elastic submerged breakwaters. Proceedings of Institution of Mechanical Engineerings Part M-Journal of Engineering for the Maritime Environment,(in press).(2012)
21. Lee, J. F., and Lan, Y. J., A second-order solution of waves passing porous structures. Ocean Engineering, Vol.23(2), pp.143-165. (1996)
22. Li, C. W., and Yan, K., Numerical investigation of wave-current-vegetation interaction. Journal of Hydraulic Engineering-Asce, Vol.133(7), pp.794-803. (2007)
23. Losada, I. J., Patterson, M. D., and Losada, M. A., Harmonic generation past a submerged porous step. Coastal Engineering, Vol. 31(1-4), pp.281-304. (1997)
24. Muir Wood, A.M., Coastal hydraulics, Mac Millon, London,England (1969)
25. Ohyama, T., Tanaka, M., Kiyokawa, T., Uda, T., and Murai, Y. Transmission and reflection characteristics of waves over a submerged flexible mound. Coastal Engineering in Japan, Vol.32(1), pp.53-68. (1989)
26. Petti, M., Quinn, P. A., Liberatore, G., and Easson, W. J., Wave velocity field measurements over a submerged breakwater. ASCE, Vol.1,,pp.525-539(1995)
27. Putnam, J., and University of California, B. F. M. L., Loss of Wave Energy Due to Perculation in a Permeable Sea Bottom. Transaction American Geophysical Union, Vol.30, pp.349-356. (1949)
28. Raffel, M., Willert, C., Wereley, S., and Kompenhans, J., Particle image velocimetry: a practical guide. : Springer Verlag. (2007)
29. Sollitt, C. K., and Cross, R. H. (1972). Wave transmission through permeable breakwaters.Proceeding 13th Coastal Engineering Conference,ASCE ,pp.1827-1846
30. Souliotis, D., and Prinos, P., Effect of a vegetation patch on turbulent channel flow. Journal of Hydraulic Research, Vol.49(2), pp.157-167. (2011)
31. Stratigaki, V., Manca, E., Prinos, P., Losada, I. J., Lara, J. L., Sclavo, M., Amos, C. L.,
Caceres, I.,and Sanchez-Arcilla, A., Large-scale experiments on wave propagation over Posidonia oceanica. Journal of Hydraulic Research, Vol.49, pp.31-43. (2011)
32. Sulisz, W., McDougal, W. G., and Sollitt, C. K., Wave interaction with rubble toe protection. Ocean Engineering, 16(5-6), pp.463-473. (1989)
33. Svendsen, I. A.. Analysis of surf zone turbulence. Journal of Geophysical Research, Vol.92(C5),pp. 5115-5124. (1987)
34. Ting, F. C. K., and Kim, Y.-K.. Vortex generation in water waves propagating over a submerged obstacle. Coastal Engineering, Vol.24(1–2), pp. 23-49. (1994)
35. Tsai, C.-P., Chen, H.-B., and Lee, F.-C.. Wave transformation over submerged permeable breakwater on porous bottom. Ocean Engineering, Vol.33(11-12), pp.1623-1643. (2006)
36. Wang, K. H., and Ren, X. G., Water-waves on flecible and porous breakwaters. Journal of Engineering Mechanics-Asce, Vol. 119(5), pp.1025-1047. (1993)
37. Watarai, H., Ohashi, Y., and Nagasaki, S. (1987). Wave dissipating structure of new type using piles and flexible textile sheet. Proceedings 34th Japanese Coastal Engineering Conference, pp. 502–506, (1987)
38. Willert, C. E., and Gharib, M., DIGITAL PARTICLE IMAGE VELOCIMETRY. Experiments in Fluids, Vol.10(4), pp.181-193. (1991)
39. 周宗仁,方惠民,水面彈性模消波特性之研究,第十七屆海洋工程研討會論文集,433頁-458頁,(1995)。
40. 鄭詠翰,應用PIV量測系統於單一彈性透水潛堤之流場特性研究,國立成功大學水利及海洋工程研究所碩士論文,(2011)。
41. 藍元志,波浪與可透水彈性體互相作用之分析,國立成功大學水利及海洋工程研究所博士論文,(2000)。