簡易檢索 / 詳目顯示

研究生: 陳敬元
Chen, Jing-Yuan
論文名稱: 輸入修正法結合回授控制之研究與其在長距離移動之機電系統定位最佳化與減振之應用
Development of Input Shaping/Feedback Control Integration Methods and Their Applications on Residual Vibration Suppression and Long-Range Motion Planning Optimization of Electro-mechanical Systems
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 160
中文關鍵詞: 殘留振動輸入修正回授控制長距離移動系統Duffing非線性電磁力非線性
外文關鍵詞: Electromagnetic Actuated Systems, Input shaping, Residual Vibration, Duffing Nonlinear Systems, Feedback Control, Long-Range Motion
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   殘留振動的存在,影響了撓性機件傳輸運動之精度定位,增加達成工作目標所需要的時間。輸入修正,提供了一個有效且快速的減振方法,能有效地縮短安定時間及抑制殘留振動。然而輸入修正屬於廣義的開迴路控制,無法抵抗外界環境干擾,可能造成殘留振動無法完全消除;克服的方法除了減少外在干擾或發展更具強健性之輸入修正方法外,另可考慮結合回授控制系統。於本文中,我們進一步拓展輸入修正法的應用,包括:電磁驅動之Duffing非線性結構系統、長距離移動之線性系統以及與回授控制系統之整合。於Duffing非線性系統方面,本文以模擬分析和實驗驗証討論所發展出之非線性輸入修正結合回授控制之減振性能,其結果顯示:非線性輸入修正結合回授控制不僅能有效縮短系統之安定時間,對於系統受外界環境干擾下,仍具有良好的性能。於長距離移動系統方面,本文依系統本身的性能限制設計輸入修正法,模擬分析和實驗結果顯示,此線性輸入修正法能有效地抑制殘留振動,於加/減速過程所殘留下的Undershoot/Overshoot亦只有未修正前的四分之一。並為解決加/減速過程所殘留的Undershoot/Overshoot,我們應用此輸入修正方法的概念完成定位最佳化設計,成功地將Undershoot/Overshoot的大小壓至需求範圍中。於長距離移動系統與回授控制整合方面,我們亦將輸入修正結合回授控制器並與原輸入修正及純回授控制器比較,其結果顯示,輸入修正結合回授控制同時保有快速安定時間及干擾排除能力。本文研究結果將有助於應用在需要快速且穩定的切換之機械作動需求之精密機械控制相關應用。

      This thesis concerns the precision positioning and vibration suppression of lightly damped mechanic systems using improved command shaping techniques. Command shaping is an effective technique for suppressing motion-induced residual vibration of lightly damped systems. However, due to its open-loop feature, the steady state behavior may not be well controlled due to the influences of external disturbances. In the first part of this thesis, a scheme to integrate the input shaping with feedback control is proposed. By input shaping, systems can fast reach their target positions while the feedback control ensures the robustness against environment disturbance. This scheme is verified using an electromagnetically driven fixed-fixed beam. The experimental results indicate that the proposed scheme can successfully reduce the rising time and suppress the residual vibration excited by external disturbance. In the second part of this thesis, the input shaping, feedback control, and the proposed shaping with control scheme are applied to a linear motor driven long range motion structural system. This system can also be subjected to electromagnetic force actuation to simulate the dynamics of the next generation magnetic bearing suspended wafer scanner for lithography process. The experimental indicates that these three methods can effectively suppress the vibration during traveling and thus increase the scanning rate significantly but an undershoot and an overshoot are observed at the starting and stopping of the stepper. Future research will be focused on how to reduce the amplitude of them while keeping the moving speed as fast as possible.

    摘要……………………………………………………………………………I Abstract………………………………………………………………………II 致謝…………………………………………………………………………III 目錄…………………………………………………………………………IV 表目錄 ……………………………………………………………………IX 圖目錄 ………………………………………………………………………X 符號說明 ………………………………………………………………XVIII 第一章 緒論 1.1前言…………………………………………………………………1 1.2長距離移動系統…………………………………………………3 1.3研究動機及目的…………………………………………………5 1.4本文架構…………………………………………………5 第二章 背景介紹 2.1線性輸入修正法…………………………………………………7 2.2輸入修正法之相關應用………………………………………10 2.2.1 單獨使用輸入修正法…………………………………11 2.2.2 輸入修正法結合控制系統……………………………13 2.3非線性輸入修正法………………………………………………14 2.4長距離移動系統之控制策略…………………………………17 2.4.1 開回路控制………………………………………………19 2.4.2 閉回路控制………………………………………………20 第三章 非線性輸入修正法設計 3.1 能量分析方法…………………………………………………21 3.1.1 二步輸入法………………………………………………22 3.1.2 三步輸入法………………………………………………25 3.2 應用於Duffing非線性結構之減振模擬分析……………29 3.2.1 減振效果比較……………………………………………29 3.2.2 對系統參數不確定之強健性研究……………………29 3.3 討論………………………………………………………………31 3.3.1 線上調整方法流程………………………………………31 3.4 結論………………………………………………………………33 第四章 非線性輸入修正結合回授控制器之模擬分析與實驗驗證 4.1 實驗系統的設計與建立……………………………………34 4.1.1 雙鉗樑結構設計…………………………………………35 4.1.2 電磁致動器與Target設計………………………………37 4.1.3 雙鉗樑系統之彈簧常數量測…………………………40 4.1.4 雙鉗樑系統之自然振動頻率及等效阻尼與等效質量……42 4.1.5 電壓轉電流放大器設計………………………………45 4.2 系統模型建立…………………………………………………49 4.3 線性回授控制器的設計……………………………………50 4.4 純PID控制模擬分析與實驗結果…………………………52 4.5 非線性輸入修正結合PID控制模擬分析與實驗結果……58 4.6 結論………………………………………………………………61 第五章 輸入修正法於長距離移動之線性系統減振之模擬分析與實驗驗證 5.1 介紹………………………………………………………………62 5.2 實驗系統的設計與架設……………………………………63 5.2.1 馬達上層結構設計………………………………………64 5.2.2 馬達上層結構彈簧常數量測…………………………67 5.2.3 懸臂樑結構自然振動頻率量測………………………68 5.2.4 線性馬達架設……………………………………………70 5.3 ZV與ZVD法的設計…………………………………………74 5.3.1 ZV法的設計………………………………………………74 5.3.2 ZVD法的設計……………………………………………76 5.4 初步模擬分析與實驗結果比較……………………………78 5.4.1 懸臂樑結構系統模型建立……………………………79 5.4.2 步階輸入分析……………………………………………80 5.4.3 ZV與ZVD法的模擬與實驗比較……………………84 5.4.4 ZV與ZVD法對參數不確定之研究…………………90 5.5 應用輸入修正法最佳化設計………………………………96 5.5.1 Minimum Travel Duration………………………………96 5.5.2 Minimum Undershoot…………………………………101 5.6 結論……………………………………………………………106 第六章 回授控制於長距離移動之機電系統減振設計 6.1 系統動態模擬之建立………………………………………107 6.2 操作點線性化之控制器設計………………………………109 6.3 操作點線性化之回授控制器模擬分析與實驗驗證…112 6.3.1 步階響應模擬分析與實驗驗證………………………113 6.3.2 外界干擾之排除能力模擬分析與實驗驗證………115 6.4 回饋線性化之控制器設計…………………………………119 6.5 回饋線性化之控制器模擬分析與實驗驗證……………122 6.5.1 步階響應模擬分析與實驗驗證………………………122 6.5.2 對外界干擾之排除能力摸擬分析與實驗驗證……124 6.6 回饋線性化控制之穩定性分析……………………………129 6.6.1 取樣頻率對回饋線性化控制強健性研究…………129 6.6.2 於不同操作位置對外界干擾強健性研究…………132 6.7 結論……………………………………………………………134 第七章 輸入修正法結合回授控制於長距離移動之機電系統減振設計 7.1 系統等效模型…………………………………………………135 7.2 模擬結果與實驗驗證………………………………………138 7.3 修正參考輸入…………………………………………………146 7.4 結論……………………………………………………………149 第八章 結論及未來工作 8.1 全文歸納………………………………………………………150 8.2 結論……………………………………………………………152 8.3 論文貢獻………………………………………………………153 8.4 未來工作………………………………………………………154 參考文獻…………………………………………………………………155

    [1]S. Jones and A. G. Ulsoy, “An Approach to Control Input Shaping with Application to Coordinate Measuring Machines,” ASME J. of Dynamics, Measurement, and Control, Vol. 121, pp. 242-247, 1999.
    [2]O. J. M. Smith, “Posicast Control of Damped Oscillatory Systems,” Proc. Of the IRE, pp. 1249-1255, 1957.
    [3]L. Y. Pao and M. A. Lau. "Robust Input Shaper Control Design for Parameter Variations in Flexible Structures," ASME J. Dynamic Systems, Measurement, and Control, Vol. 122, pp. 63-70, 2000.
    [4]D. K. Miu, Mechatronics, Eelctromechanics and Contromechanics, Springer, New York, 1992.
    [5]T. Tuttle, Creating Time-Optimal Commands for Linear Systems, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    [6]W. E. Singhose, Command Generation for Flexible Systems, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1997.
    [7]N. C. Singer and W. P. Seering, ”Preshaping Commond Inputs to Reduse System Vibration,” J. of Dynamic Systems, Measurement, and Control, pp. 76-82, 1990.
    [8]N. A. Nayfeh, Adaptation of Delayed Position Feedback to the Reduction of Sway of Container Cranes, Master Thesis, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, December, 2002.
    [9]W. E. Singhose and N. C. Singer, “Effects of Input Shaping on Two-Dimensional Trajectory Following,” IEEE Transations on Robotics and Automation, Vol. 12(6), pp. 881-887, December 1996.
    [10]尹瑞豐,非線性輸入修正法之研究與其在機電系統減振上之應用,國立成功大學機械系碩士論文,2004。
    [11]T. C. Lin, “Design an Input Shaper to Reduce Operation-Induced Vibration,” American Control Conf., pp. 2502-2506, San Francisco, CA, 1993.
    [12]N. C. Singer and W. P. Seering, “Design and Comparison of Command Shaping Methods for Controlling Residual Vibration,” Proceedings of the IEEE International Conference on Robotics and Automation., pp. 888-893, Scottsdale, AZ, 1989.
    [13]T. D. Tuttle and W. P. Seering, “Vibration Reduction in 0-g Using Input Shaping on the MIT Middeck Active Control Experiment,” American Control Conf., pp. 919-923, Seattle, WA, 1995.
    [14]T. D. Tuttle and W. P. Seering, “A Zero-Placement Technique for Designing Shaped Inputs to Suppress Multiple-mode Vibration,” American Control Conf., pp. 2533-2537 Baltimore, MD, 1994.
    [15]W.E. Singhose, L.J. Porter, and W.P. Seering, “Input Shaped Control of a Planar Gantry Crane with Hoisting,” American Control Conf. Albuquerque, NM, 1997.
    [16]E. Crawley, M. Campbell, and S. Hall, High Performance Structures: Dynamics and Control, Cambridge University Press, 1999.
    [17]N. Hagood IV, D. Roberts, L. Saggere, K. Breuer, K-S Chen, J. Carretero, H. Li, R. Mlcak, S. Pulitzer, M. Schmidt, S. Spearing, and Y. H. Su, “Micro Hydraulic Transducer Technology for Actuation and Power Generation,” in the SPIE 7th Annual International Symposium on Smart Structure and Materials Conference, 2000.
    [18]M. E. Campbell, J. P. How, S. Grocott, and D. W. Miller "On-orbit Closed-loop Control Results for MACE" AIAA J. Guidence, Control, and Dynamics (to be published).
    [19]E. Prechtel and S. R. Hall, “ Design of a High Efficiency, Large Stroke, Electromechanical Actuator,” Smart Materials and Structures, Vol. 8, pp. 13-30, 1999.
    [20]E. Crawley and J. de Luis, “Use of Piezoelectric Actuators as Element of Intelligent Structures,” AIAA Journal, Vol. 25, pp. 1373-1385, 1987.
    [21]T. Singh and G.R. Heppler, “Shaped Input Control of a System With Multiple Modes,” ASME Journal of Dynamic Systems, Measurement, and Control, pp. 341-437, September 1993.
    [22]P. Van Kessel, L. Hornbeck, R. Meier, M. Douglass, A MEMS-Based Projection Display, Proc. IEEE, Vol. 86, no. 8, pp. 1687-1704, 1998.
    [23]C. La-orpacharapan and L. Y. Pao. “Control of Flexible Structures with a Projected Phase-Plane Approach,” Proc. Amer. Ctrl. Conf., Arlington, VA, June 2001.
    [24]C. La-orpacharapan and L. Y. Pao. “Shaped Phase-Plane Control for Flexible Structures with Friction,” Proc. Amer. Ctrl. Conf., Anchorage, AK, May 2002.
    [25]C. La-orpacharapan and L. Y. Pao. “Shaped Control for Damped Flexible Structures with Friction and Slew Rate Limits,” Proc. IEEE Conf. Decision and Ctrl., Las Vegas, NV, Dec. 2002.
    [26]C. La-orpacharapan and L. Y. Pao. “Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance,” Proc. Amer. Ctrl. Conf., Denver, CO, June 2003.
    [27]S. Jordan. “Eliminating Vibration in the Nano-World,” http://www.pi.ws/
    [28]W. Singhose, W. Seering, and N. Singer, “Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs,” J. of Mechanical Design, pp. 654-659, June 1994.
    [29]W. Singhose, W. Seering, and N. Singer, “Input Shaping for Vibration Reduction with Specified Insensitivity to Modeling Errors,” In Japan-USA Sys. On Flexible Automation, 1996
    [30]J. Park and P.-H. Chang, “Learing Input Shaping Technique for Non-LTI Systems,” J. of Dynamic Systems, Measurement, and Control, Vol. 123, pp. 288-293, June 2001.
    [31]A. Tzes and S. Yurkovich, “An Adaptive Input Shaping Control Scheme for Vibration Suppression in Slewing Flexible Structures,” IEEE Transations on Control Systems Technology, Vol. 1, pp. 114-121, June 1993.
    [32]R. Kinceler and P.H. Meckl, “Input Shaping for Nonlinear System,” In Proceedings of the American Control Conf., pp. 914-918, Seattle, WA, 1995.
    [33]D. Gorinevsky and G. Vukovich, “Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver,” J. of Guidance, Control, and Dynamics, Vol. 21(2), pp. 264-270, 1998.
    [34]L.-W. Tsai, “Solving the Inverse Dynamics of Parallel Manipulators by the Principle of Virtual Work,” In 1998 ASME Desian Engineering Technical Conf, number DETC/MECH-5865, Sept 1998.
    [35]C.-Y. Wang, W. K. Timoszyk, and J. E. Borow, “Payload Maximization for Open Chained Manipulators Finding Weightlifting Motions for Puma 762 Robot,” IEEE Transations on Robotics and Automation, Vol. 17(2), pp. 218-244, April 2001.
    [36]J. K. Kozak, “Robust Command Generation for Nonlinear Systems,” Ph.D. Thesis, Georgia Tech., 2003.
    [37]A. H. Nayfeh and Z. N. Masoud, “Dynamic and Control of Cranes: A Review,” Journal of Vibration and Control 9, pp. 863-908, 2003.
    [38]A. D. Hazlerigg, “Automatic control of crane operations,” in Proceedings of the IFAC 5th World Congress Vol. 1, Paris, France, Paper No 11.3, 1972.
    [39]S. Yamada, H Fujikawa and K. Matsumoto, “Suboptimal control of the roof crane by using the microcomputer,” in Proceedings of the conference on Industrial Electronics: IECON 83, San Francisco, CA, pp. 323-328, 1983.
    [40]P. Dadone and H. F. VanLandingham, “Load transfer control for a gantry crane with arbitrary delay constraints,” Journal of Vibration and Control 7, in press, 2001.
    [41]A. Marttinen, “Pole-placement control of a pilot gantry,” in Proceedings of the American Control Conference Pittsburgh, PA, Vol. 3, pp.2824-2826,1989.
    [42]A. J. Ridout, “New feedback control system for overhead cranes,” in Proceedings of Electric Energy Conference, Adelaide, Australia, Vol. 1, pp. 135-140, 1987.
    [43]A. J. Ridout, “Anti-swing control of the overhead crane using linear feedback,” Journal of Electrical and Electronics Engineering, Australia 9(1/2), pp. 17-26, 1989.
    [44]S. D. Senturia, Microsystem Design, Kluwer Academic Publication, 2000.
    [45]T. R. Akylas and T.-S. Yang, “On Short-scale Oscillatory Tails of Long-wave Disturbances.” Stud. Appl. Maths, Vol. 94, pp. 1-20, 1995.
    [46]S.-P. Su and T.-S. Yang, “Suppression of Nonlinear Forced Waves by Error-Insensitive Input Shaping,” J. Chinese Society of Mechanical Engineers, Vol. 23, No. 6, pp. 507-516, 2002..
    [47]A. Nayfeh and D. Mook, Nonlinear Oscillation, Wiley, 1979.
    [48]T.-S. Yang, K.-S. Chen and J.-F. Yin, “Design of Input Shapers for Duffing Nonlinear System” AIAA J. mechatronics, 2004(Submitted).
    [49]Y. Nemirovsky and O. Bochobza-Degani, “A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators,” IEEE J. Microelectromechanical Systems, Vol. 10, pp. 601-615, 2001.
    [50]K.-S. Chen, D. L. Trumper, and S. T. Smith, “Design and Control of an X-Y-θ Stage,” Precision Engineering, Vol. 26, pp. 355-369, 2002.
    [51]D. L. Trumper, Sean M. Olson, and P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension System,” IEEE, Transactions on Control Systems Technology, Vol. 5, No. 4, pp. 427-438, July, 1997
    [52]S. Mittal and C.-H. Menq, “Precision Motion Control of a Magnetic Suspension Actuator Using a Robust Nonlinear Compensation Schem,” IEEE/ASME, Transactions on Mechatronics, Vol. 2, No. 4, pp. 268-280, Dec. 1997.
    [53]何正中,等效微機電靜電致動器之控制器設計與實驗驗證,國立成功大學機械系碩士論文,2002。
    [54]J. J. Slotine and W.-P. Li, “Applied Nonlinear Control,” Prentice-Hall, 1991

    下載圖示 校內:2006-07-27公開
    校外:2006-07-27公開
    QR CODE