| 研究生: |
黃健銓 Huang, Jian-Chiuan |
|---|---|
| 論文名稱: |
含磁性粒子之液晶薄膜其相位調變性能之研究 Study of Liquid-Crystal Films in Phase Modulated Property with Ferro-nanoparticles Dispersions |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 相位調變 、磁性粒子 、液晶薄膜 |
| 外文關鍵詞: | liquid-crystal film, ferro-nanoparticles, phase modulation |
| 相關次數: | 點閱:122 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
加上適當的外場時,液晶薄膜內的液晶分子導軸方向將會轉動並且改變液晶薄膜的有效折射率。對於液晶薄膜而言,電場效應比起磁場而言是相當顯著的,所以在應用上常選用電場為其外場。然而藉由在液晶中摻雜磁性粒子,液晶薄膜的磁效應將可以改善,因此除了電場之外磁場將成為影響液晶薄膜的有效折射率的參數之一。
在本篇論文中,我們探討了摻雜磁性粒子液晶薄膜的相位調變能力。電場及磁場對薄膜之相位調變的影響都將加以考慮。我們將先利用液晶薄膜的特性來檢測所準備之薄膜試件的品質,之後利用Khoo所提出的方法去量測在不同電場、磁場下液晶薄膜的相位差。經過我們實驗證明,在磁場的配合之下,磁性粒子的確降低起始電場閥值與調變相位差所需的電場,並且隨著磁性粒子的濃度增加其效果更加明顯。此外我們也發現隨著磁場的增加,可以觀察到磁場飽和的現象,並對此現象,提出合理的解釋。
When the properly external field is applied, the directors of the liquid crystal molecules will be rotated and the effective refractive index of the liquid crystal films will be changed. The electric field is often chosen to be the external field in the application, because the effects of electric filed on liquid-crystal are more significant than those of magnetic filed. However, the magneto-optical effects of the liquid crystal films can be improved by doping with the ferro-nanoparticles. In addition to electric field, magnetic field will become an parameter that is available to control the effective refractive index.
In this paper, the liquid-crystal films in phase modulated property will be presented. The effects of the electric and magnetic fields on the optical characteristics will both be considered. The optical method will be used to test the qualities of the films prepared and then the phase differences will be measured under variable electric and magnetic fields with Khoo’s method. In our experiments, we can show that ferro-nanoparticles can reduce the threshold voltage and the amount of electric field that modulated the phase. The effect is clearer, when the concentration of ferro-nanoparticles increase. Moreover, we can observe the saturation under the gradually increasing magnetic field. About this phenomenon, we provide a explanation in our study.
1. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih 1997, Optics Letters 22, 1229–1231. Coherent beam amplification with a photorefractive liquid crystal.
2. I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood 1998, Optics Letters 23, 253–255. Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals.
3. C. E. Holton, P. Bos, M. Miller, and W. E. Glenn 1998, Proceeding of SPIE Spatial Light Modulators 3292, 25-36. Patterned alignment, liquid crystal diffractive spatial light modulators and devices.
4. M. Kulishov 1999, Applied Optics 38, 7356-7363. Interdigitated electrod-induced phase grating with an electrically switchable and tunable period.
5. I. Fujieda 2001, Applied Optics 40, 6252-6259. Liquid-crystal phase grating based on in-plane switching.
6. G. A. Lester, and A. M. Strudwick 2000, Journal of Modern Optics 47, 1959-1967. A liquid crystal phase grating for instrumentation applications.
7. R. A. J. Soden, and R. J. Dewhurst 1999, Optics and Lasers in Engineering 31, 123-134. An integrated liquid crystal phase modulator for speckle shearing interferometry.
8. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis 2000, Applied Optics 39, 6545-6555. Liquid-crystal blazed-grating beam deflector.
9. L. Petti, P. Mormile, Y. Ren, M. Abbate, P. Musto, G. Ragosta, and W. J. Blau 2001, Liquid Crystals 28, 1831-1837. Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film.
10. H. S. Seo, S. Choi, and K. Oh 2000, IEEE Photonics Technology Letters 12, 519-521. Electrically controllable long-period liquid crystal iber gratings.
11. T. R. Wolinski, A. Jarmolik, and W. J. Bock 1999, IEEE Transactions on Instrumentation and Measurement 48, 2-6. Development of fiber optic liquid crystal sensor for pressure measurement.
12. G. M. Zharkova 2000, Optics and Laser Technology 32, 611-619. Optical phenomena in liquid crystals and their application in aerophysical studies.
13. T. Borzsonyi, and A. Buka 1998, Physical Review E 58, 7419-7427. Response of a homeotropic nematic liquid crystal to rectilinear oscillatory shear.
14. F. Brochard, and P. G. de Gennes 1970, Journal of Physics 31, 691-708. Theory of magnetic suspensions in liquid crystals.
15. S. H. Chen, and N. M. Smer 1983, Physical Review Letters 51, 2298-2301. Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals.
16. C. C Bowley, P. A. Kossyrev, G. P. Crawford, and S. Faris 2001, Applied Physics Letters 79, 9-11. Variable-wavelength switchable Bragg grating formed in polymer-dispersed liquid crystals.
17. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F.Kajzar 2001, Optics Communications 187, 257-261. High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures.
18. A. Y. G. Fun, M. S. Tsai, T. C. Liu, and L. J Husng 1999, ASID'99, 207-210. Optical switchable gratings based on polymer-dispersed liquid crystal films doped with a guest-host dye.
19. I. C. Khoo 1995, Optics Letters 20, 2137-2139. Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film.
20. W. Lee, and S. L Yeh 2001, Applied Physics Letters 79(27), 4488-4490. Optical amplification in nematics doped with carbon nanotubes.
21. W. Lee, and C. S. Chiu 2001, Optics Letters 26, 521-523. Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes.
22. D. Kang, J. E. Maclennan, N. A. Clark, A.A. Zakhidov and R. H. Baughman 2001, Physical Review Letters 86, 4052-4055. Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment.
23. S. B. Lee, K. Nakayama, T. Matsui, M. Ozaki, and K. Yoshino 2002, IEEE Transactions on Dielectrics and Electrical Insulation 9, 31-38. Structure and dynamics of suspensions of silica particles in liquid crystals under a low frequency ac applied voltage.
24. N. J. Diorio JR., M. R. Fisch, and J. W. West 2002, Liquid Crystal 29, 589-596. The electro-optic properties of colloidal silica filled nematics.
25. P.G. de Gennes, J. Prost 1993, The Physics of Liquid Crystals 83, 2nd Edition, International Series of Monographs on Physics, Oxford Science, Oxford.
26. V.E. Fertman. 1990, Magnetic fluids guidebook: properties and applications, Hemisphere, New York
27. 黃忠良1999, 磁性流體理論應用, 復漢, 台南
28. P. Yeh, and C. Gu 1999, Optics of Liquid Crystal Displays, John Wiley & Sons, New York
29. E. Hecht 1987, Optics, Addison-Wesley, Reading, Mass.
30. A. Yariv, and P. Yeh 1984, Optical Waves in Crystals, John Wiley, New York
31. I. C. Khoo 1995, Liquid Crystals, John-Wiley & Sons, New York
32. 松本正一、角田市良著, 劉瑞祥譯 1996, 液晶之基礎與應用, 國立編譯館, 台北
33. I. C. Khoo, and S. T. Wu 1993, Optics and nonlinear optics of liquid crystals, World Scientific, Singapore.
34. I. C. Khoo 1995, Liquid crystals, physical properties and nonlinear optical phenomena, N.Y. Wiley & Sons, New York.
35. H. Stark 2001, Physics Report 351, 387-474. Physics of colloidal dispersions in nematic liquid crystals.