簡易檢索 / 詳目顯示

研究生: 郭坤銓
Guo, Kun-Chuan
論文名稱: 基於高階轉折理論於三明治複合板結構之幾何非線性靜態分析
Geometric Nonlinear Static Analysis of Sandwich Composite Plate Based on Higher-Order Refined Zigzag Theory
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 163
中文關鍵詞: 三明治複合板幾何非線性高階轉折理論有限元素
外文關鍵詞: Sandwich composite plate, Geometric nonlinearity, Higher-order refined zigzag theory, Finite element
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在發展一套適用於三明治複合板結構(Sandwich composite plate structure)於幾何非線性大變形(Geometrically nonlinear large deformation)下的高階轉折理論(Higher-order refined zigzag theory, HRZT),研究主軸圍繞有限元素方程式的建構(Finite element formulation),其核心著重於推導板元素之線性與非線性剛性矩陣,以及探討系統於不同邊界條件、幾何尺寸與外部負載組合下,結構之靜態力學響應。
    承襲本實驗室過去於三明治複合樑(線性與非線性)以及複合板結構(線性)之研究基礎,本研究進一步將板結構之高階轉折位移理論延伸其應用至幾何大變形領域,以解決高負載情境下所誘發的幾何非線性問題,從而模擬實際工程中更為複雜且具挑戰性的結構行為。
    本研究所採用之HRZT 板理論位移場可視為HRZT樑理論之二維推廣,透過於面內位移引入高階轉折函數,使得模型得以滿足各項邊界條件,如層間介面軸向位移連續、層間介面剪應力連續、上下自由表面無剪應力等,對於複合板結構於面內和厚度方向的力學響應提供更精確且靈活的描述。
    鑒於板結構問題於高維度空間中求取解析解(Exact Analytical solution)相對複雜,實務上難以取得。本研究基於HRZT理論,針對大變形幾何非線性靜態系統,開發三種不同形式的元素,分別為HRZT4N36、HRZT4N40、HRZT8N72。
    元素名稱「4N」與「8N」分別表示為元素內部含有4個以及8個主要節點,而數字「36」、「40」、「72」表示該元素內節點自由度總和。經元素收斂性分析與剪力自鎖分析結果可知,HRZT4N40可在不顯著增加運算量的前提下,也能有效地克服元素剪力自鎖(Shear locking)的效應,具備較佳的實務應用性。
    為驗證本研究所建立之HRZT模型的數值準確性,本文將其數值結果與FSDT, HSDT, RZT等各種經典板理論的有限元素模型,以及商用套裝軟體ANSYS三維有限元素模型的結果進行比對,比較項目涵蓋面內位移、撓曲響應、正向應力、面內剪應力與面外剪應力等。結果顯示,本研究發展之HRZT 板元素在幾何非線性靜態響應分析中具備高度數值精確性,能有效捕捉因材料性質與厚度方向不連續所引發之真實力學行為。
    此外,針對非線性挫曲分析(Nonlinear buckling analysis),本研究透過採用預先施加之橫向負載產生初始幾何不完美(Initial imperfection)以模擬真實結構之受壓反應。數值結果證實,HRZT模型不僅能準確預測臨界挫曲負載,更能有效追蹤結構由挫曲前期(Pre-buckling)至挫曲後期(Post-buckling)的完整變形路徑與挫曲階段剛性退化的過程;儘管在薄板大變形的挫曲較為後期區域存在些微數值差異,但整體趨勢仍與ANSYS三維模型展現高度一致性,充分驗證了本模型在評估結構穩定性上的適用性與可靠度。
    根據本文呈現的數值結果,證明了HRZT板元素能夠準確描述三明治複合板的靜態非線性系統響應,其有限元素公式及其數值結果可應用於航空工程、海洋工程、土木工程和機械工程等多個領域。

    This study aims to develop a Higher-Order Refined Zigzag Theory (HRZT) specifically for sandwich composite plate under geometrical nonlinearity, which is focus on constructing a robust finite element formulation and deriving both linear and nonlinear stiffness matrices for nonlinear system. The static mechanical responses are extensively investigated under various combinations of boundary conditions, geometric dimensions (e.g. aspect ratio), and the level of external loading. Based on the previous laboratory researches of composite beams and plates, this work extends those studies to geometric nonlinear large deformation applications to address complex nonlinear problems in high loading environments and simulate realistic engineering behaviors.
    The displacement field for plate structure can be seen the two-dimensional extension of HRZT beam theory. By adopting higher-order zigzag functions, the model can accurately satisfy essential boundary conditions, such as the continuity of interlaminar axial displacements and the continuity of interlaminar shear stresses, as well as no shear stress on the upper and lower surface of face-sheets.
    Due to the complexity of obtaining analytical solutions for plate structure, numerical methods are prioritized. Three HRZT-based elements are developed in this study, which are HRZT4N36, 4N40, and 8N72, respectively, where notation 4N/8N denotes primary nodes and number 36/40/72 means total degrees of freedom in a single element).
    Convergence and shear locking analysis results demonstrate that HRZT4N40 element effectively overcomes shear locking without significant computational consumption and exhibit superior practical applicability for large-scale structural simulations.
    To verify numerical accuracy, results are compared against 3D finite element models with commercial ANSYS software and finite elements model based on various plate theories, such as FSDT, HSDT, and RZT. Comparative analyses of displacement, deflection, and various stress components are validated that HRZT element can effectively capture local effects like zigzag displacement along thickness direction, which is induced by material stiffness variation.
    Furthermore, in nonlinear buckling analysis, pre-applied transverse load is used to generate initial geometric imperfections for simulating real-world compressive situation. The results show the model developed by this study accurately track the deformation path from pre-buckling stage to buckling stage, and stiffness degradation through the pre- and post-buckling stages. These results provide essential insights into the structural safety margins. Despite minor discrepancies in advanced post-buckling stage, the results remain highly consistent with ANSYS 3D, validating its reliability in structural stability.
    In conclusion, HRZT plate element developed in this study provides an accurate and efficient framework for describing the static nonlinear responses of sandwich composite plates. This formulation and its numerical results offer significant theoretical and practical value for structural application in aerospace, marine, civil, and mechanical engineering.

    中文摘要 I ABSTRACT III 誌謝 XXI 目錄 XXII 表目錄 XXV 圖目錄 XXVI 符號說明 XXIX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 板結構理論(Plate theory) 2 1.2.1.1 經典板理論(CPT) 2 1.2.1.2 一階剪力變形理論(FSDT) 2 1.2.1.3 高階剪力變形理論(HSDT) 3 1.2.1.4 分層理論(LWT) 4 1.2.1.5 轉折理論與改進轉折理論(ZT and RZT) 4 1.2.1.6 高階轉折理論(HRZT) 5 1.2.2 HRZT理論 11 1.2.2.1 樑結構 11 1.2.2.2 板結構 14 1.3 研究動機 16 第二章 HRZT板於幾何非線性之有限元素公式推導 17 2.1 基於HRZT板大變形幾何非線性之有限元素公式推導 18 2.1.1 幾何非線性靜態系統之總位能變分公式推導 18 2.1.2 幾何非線性靜態系統之有限元素平衡方程式推導 24 2.1.3 幾何非線性靜態系統之牛頓-拉弗森數值方法 28 2.2 基於HRZT理論開發之板元素 32 2.2.1 HRZT4N36 32 2.2.1.1 應變位移矩陣 𝐁 之推導 33 2.2.2 HRZT4N40 34 2.2.3 HRZT8N72 36 第三章 HRZT於幾何非線性之有限元素結果 38 3.1 元素收斂性分析(Element convergence analysis) 40 3.2 元素剪力自鎖分析(Element shear locking analysis) 42 3.3 幾何非線性與線性系統之分析結果比較 47 3.4 結果與討論-靜態位移 50 3.4.1 面內位移 50 3.4.1.1 x軸位移結果(u_x) 50 3.4.1.2 y軸位移結果(u_y) 57 3.4.2 面外z軸橫向位移(u_z) 66 3.5 結果與討論-靜態應力 78 3.5.1 面內應力結果 78 3.5.1.1 x軸正向應力(σ_xx) 78 3.5.1.2 y軸正向應力(σ_yy) 85 3.5.1.3 xy向剪應力〖(τ〗_(xy)) 92 3.5.2 面外剪應力結果 100 3.5.2.1 xz向剪應力(τ_xz) 100 3.5.2.2 yz向剪應力(τ_yz) 107 3.6 結果與討論-非線性挫曲分析(Nonlinear buckling analysis) 113 第四章 結論與未來展望 120 4.1 結論 120 4.2 未來展望 123 參考文獻 124

    1. Öchsner, A., Classical beam theories of structural mechanics. Vol. 42. 2021: Springer.
    2. Eltaher, M.A., A.E. Alshorbagy, and F.F. Mahmoud, Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Applied Mathematical Modelling, 2013. 37(7): p. 4787-4797.
    3. Ugural, A.C., Plates and shells: theory and analysis. 2017: CRC Press.
    4. Lasry, J., Pommier, J., Renard, Y., and Salaün, M., eXtended finite element methods for thin cracked plates with Kirchhoff–Love theory. International journal for numerical methods in engineering, 2010. 84(9): p. 1115-1138.
    5. Şimşek, M. and H.H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Composite Structures, 2013. 97: p. 378-386.
    6. Reddy, J., On the dynamic behaviour of the Timoshenko beam finite elements. Sadhana, 1999. 24: p. 175-198.
    7. Hosseini-Hashemi, S., M. Fadaee, and S.R. Atashipour, A new exact analytical approach for free vibration of Reissner–Mindlin functionally graded rectangular plates. International Journal of Mechanical Sciences, 2011. 53(1): p. 11-22.
    8. Reissner, E., The effect of transverse shear deformation on the bending of elastic plates. 1945.
    9. Durán, R. and A. Ghioldi, A Finite Element Method for the Mindlin–Reissner Plate Model. SIAM Journal on Numerical Analysis, 1991. 28(4): p. 1004-1014.
    10. Gaudenzi, P., Exact higher order solutions for a simple adaptive structure. International Journal of Solids and Structures, 1998. 35(26): p. 3595-3610.
    11. Kadoli, R., K. Akhtar, and N. Ganesan, Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling, 2008. 32(12): p. 2509-2525.
    12. Kant, T. and A. Gupta, A finite element model for a higher-order shear-deformable beam theory. Journal of Sound and Vibration, 1988. 125(2): p. 193-202.
    13. Hanna, N.F. and A.W. Leissa, A Higher Order Shear Deformation Theory for the Vibration of Thick Plates. Journal of Sound and Vibration, 1994. 170(4): p. 545-555.
    14. Reissner, E., On transverse bending of plates, including the effect of transverse shear deformation. International Journal of Solids and Structures, 1975. 11(5): p. 569-573.
    15. Reddy, J.N., A Simple Higher-Order Theory for Laminated Composite Plates. Journal of Applied Mechanics, 1984. 51(4): p. 745-752.
    16. Phan, N. and J. Reddy, Analysis of laminated composite plates using a higher‐order shear deformation theory. International journal for numerical methods in engineering, 1985. 21(12): p. 2201-2219.
    17. Touratier, M., An efficient standard plate theory. International Journal of Engineering Science, 1991. 29(8): p. 901-916.
    18. Soldatos, K.P., A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 1992. 94(3): p. 195-220.
    19. Aydogdu, M., A new shear deformation theory for laminated composite plates. Composite structures, 2009. 89(1): p. 94-101.
    20. Mantari, J.L., A.S. Oktem, and C. Guedes Soares, A new higher order shear deformation theory for sandwich and composite laminated plates. Composites Part B: Engineering, 2012. 43(3): p. 1489-1499.
    21. Mantari, J.L. and C. Guedes Soares, Analysis of isotropic and multilayered plates and shells by using a generalized higher-order shear deformation theory. Composite Structures, 2012. 94(8): p. 2640-2656.
    22. Liew, K.M., Z.Z. Pan, and L.W. Zhang, An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application. Composite Structures, 2019. 216: p. 240-259.
    23. Averill, R.C. and Yip, Y. C., Development of simple, robust finite elements based on refined theories for thick laminated beams. Computers & Structures, 1996. 59(3): p. 529-546.
    24. Reddy, J.N., An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Composite Structures, 1993. 25(1): p. 21-35.
    25. Gaudenzi, P., Barboni, R., and Mannini, A., A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates. Composite Structures, 1995. 30(4): p. 427-440.
    26. Melo, H.C., G.D. de Menezes, and F.C. da Rocha. A comparison between the classical beam theories based on equivalent single layer and Murakami’s zigzag theory. in XL Ibero-Latin American Congress on Computational Methods in Engineering. 2019.
    27. Murakami, H., Laminated composite plate theory with improved in-plane responses. 1986.
    28. Rodrigues, J. D., Roque, C. M. C., Ferreira, A. J. M., Cinefra, M., and Carrera, E., Radial basis functions-differential quadrature collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates according to Murakami’s Zig-Zag theory. Computers & Structures, 2012. 90-91: p. 107-115.
    29. Gherlone, M., On the use of zigzag functions in equivalent single layer theories for laminated composite and sandwich beams: a comparative study and some observations on external weak layers. Journal of Applied Mechanics, 2013. 80(6): p. 061004.
    30. Tessler, A., M. DiSciuva, and M. Gherlone, Refined zigzag theory for laminated composite and sandwich plates. 2009.
    31. Tessler, A., Di Sciuva, M., and Gherlone, M., A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. Journal of Mechanics of Materials and Structures, 2010. 5(2): p. 341-367.
    32. Sciuva, M.D., Multilayered anisotropic plate models with continuous interlaminar stresses. Composite Structures, 1992. 22(3): p. 149-167.
    33. Leite, L. F. P. and da Rocha, F. C., A novel higher-order zigzag function applied to refined unified beam theory for the analysis of composite laminated materials. Periodica Polytechnica Civil Engineering, 2023. 67(3): p. 867-874.
    34. Chakrabarti, A., Chalak, H. D., Ashraf Iqbal, M. and Sheikh, A. H., A new FE model based on higher order zigzag theory for the analysis of laminated sandwich beam with soft core. Composite Structures, 2011. 93(2): p. 271-279.
    35. Si, J. and Zhang, Y., An enhanced higher order zigzag theory for laminated composite plates under mechanical/thermal loading. Composite Structures, 2022. 282: p. 115074.
    36. Xie, F., Qu, Y., Zhang, W., Peng, Z., and Meng, G., Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory. International Journal of Mechanical Sciences, 2019. 150: p. 226-237.
    37. Chen, C.-D. and B.-F. Huang, A novel higher-order refined zigzag theory for static bending analysis in sandwich composite beam. Applied Mathematical Modelling, 2023. 119: p. 586-604.
    38. Chen, Y.-H. and C.-D. Chen, Linear static, geometric nonlinear static and buckling analyses of sandwich composite beams based on higher-order refined zigzag theory. Composite Structures, 2024. 339: p. 118131.
    39. 王培宇, 基於高階轉折理論之三明治板結構有限元素公式開發, in 機械工程學系. 2024, 國立成功大學: 台南市. p. 119.
    40. Timoshenko, S. and Woinowsky-Krieger, S., Theory of plates and shells. 1959.
    41. Leissa, A. and Niedenfuhr, F., A study of the cantilevered square plate subjected to a uniform loading. Journal of the Aerospace Sciences, 1962. 29(2): p. 162-169.

    QR CODE