簡易檢索 / 詳目顯示

研究生: 李維鈞
Li, Wei-chun
論文名稱: 利用電噴霧製備磁性核殼複合奈米粒子及其在蛋白質分子模板上的應用
The preparation of the magnetic core-shell composite nanoparticles by electrospray and the application on protein imprinted polymer
指導教授: 周澤川
Chou, Tse-chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 133
中文關鍵詞: 分子模印高分子磁性奈米粒子電噴霧
外文關鍵詞: molecularly imprinting polymer, magnetic nanoparticles, electrospray
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是近幾年來,國人十大死因之一,因此許多生醫上面的研究多著重於開發新技術應用於癌症的治療,而在本實驗室中希望結合奈米技術,分子模版技術與電噴霧技術以一創新化工技術希望在此研究領域有所突破。
    以往的分子模版技術需經過繁複的程序,本實驗希望可以將目標分子與交聯劑,起始劑與功能性單體包覆在奈米磁性粒子表面再以電噴霧方式使此粒子表面帶電後在石英管中懸浮形成流體化床,在進行功能性單體的聚合後進行收集,此實驗裝置的優點是可以避免聚合後的奈米粒子產生聚集現象希望可得到單一顆粒生物分子包覆磁性奈米球,在應用於人體的癌症檢測上時將此生物分子磁性奈米球打入人體以分子與分子間的作用力去抓癌症細胞分子再以交直流磁場產生器使此磁性奈米球產生旋轉能或震動能與熱能進而殺死癌症細胞,利用變化電磁場使磁奈米粒子產生熱,並可控制在42~43℃,以此殺死癌細胞。此種癌症熱治療方式的表現及效率,與癌細胞的種類及磁奈米粒子的特性有關。因此如何掌控上述磁性奈米粒子的結構、大小、表面官能基物質、粒徑分佈是很重要的因素。
    實驗結果顯示,在毛細管出口液滴的形狀會隨著施加的電壓大小而有所改變,當溶液導電度為90mS/cm,施加電壓範圍為1500V~4000V,在角椎噴射模式(cone-jet mode)下,製備出磁性複合奈米粒子的粒徑範圍約三十到九十奈米間,且具有良好的分散性,一般分子模版高分子所製備出的粒子粒徑大部分約為幾十微米左右,並且粒子間有聚集的現象產生,電噴霧法製備出的磁性複合奈米粒子可以改善以往製備分子模版所遭遇到的問題。
    文獻得知,在流體化床內進行流體化的粒子粒徑範圍約在幾十到幾百微米間,本研究中利用電噴霧產生的帶電粒子進行流體化程序,由TEM 結果顯示出,流體化床內的帶電粒子粒徑可控制在100nm 以下,因此可以藉由電噴霧法製備出懸浮在流體化床中的奈米級粒子。
    由實驗結果得知,空白矽基板與矽基板上收集有磁性複合殼核奈米粒子的螢光強度值分別為0.0049 與0.0872 a.u.,可以觀察出收集有磁性複合殼核奈米粒子的矽基板,其螢光強度有明顯的提高。因此藉由此實驗結果可以證實,在經由電噴霧與聚合程序後,IgG 蛋白質分子能夠存在於磁性複合殼核奈米粒子上。

    In several years the cancer is the top ten of cause of death. Many studies in the biotechnology were focused on the development of the new technique to cure the cancers. In our laboratory, we integrate nanotechnology, molecular template and electrical spray technology to create a new chemical technique. This technique is to simplify processes in the conventional molecular template method. The concept is give nano-magnetic particles including target molecule, crosslinker, initiator, and functional monomer on the surface electricity by electrical spray method. The suspension of the particles fluidized in the quartz tube and collected after polymerize with functional monomers. The advantages of this method are to avoid nanoparticles aggregation and to get independent nano-magnetic balls wrapping organism molecules. It can be applied to detect the cancers by inter-force between molecules. By the action of the ac-dc magnetic field, the nano-magnetic particles generate rotation, vibration, and thermal energy to kill cancer cells. We can control the temperature at 42-43 °C by changing electromagnetic field to produce heat. The efficiency and performance of this heat-treatment is dependent on the type of the cancers and the properties of the nano-magnetic particles.
    It is important to control the construction of the nanoparticles, particle size, surface groups, and the particle size distribution.
    From experimental result, the morphology of liquid encapsulated magnetic nanoparticles at the exit of capillary change with increasing positive potential. The conductivity of sample is 90mS/cm and the range of applying positive potential is from 1500V to 4000V. The voltage of cone-jet mode is 3550V. The size distribution of magnetic core-shell composite nanoparticles is from 30nm to 90nm and the dispersibility of particles is good. In general, the size of molecularly imprinted polymer particles is at micrometer and the aggregation of particles is serious.Magnetic composite nanoparticles which are prepared by electrospray can improve the aggregation of molecularly imprinted polymer particles. From review paper, the range of particle size is from several to hundred micrometer during fluidization. In this research, the size of charge magnetic composite nanoparticles is below 100nm during fluidization from TEM result. So we can produce nanoparticles which are suspension in the fluidize bed by electrospray.
    The fluorescence intensity of blank silicon wafer and magnetic composite core-shell nanoparticles are 0.0049 and 0.0872 a.u. . From the result, we can confirm that the existence of IgG after polymerization.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XII 表目錄 XV 符號表 XVI 第一章 緒論 1 1-1 分子模版之簡介 1 1-2 奈米科技技術 3 1-2-1 奈米材料之物理特性 3 1-2-2 磁性氧化鐵奈米粒子之應用 6 1-2-3 磁性氧化鐵奈米粒子之製備 10 1-3 核殼結構粒子的應用 12 1-4 電噴霧技術 12 1-5 研究動機 14 第二章 實驗原理 16 2-1 分子模版之簡介 16 2-1-1 分子模板的作用力 16 2-1-2 分子模板之原理 18 2-1-3 磁性複合殼-核粒子在分子模板上的應用 19 2-1-3.1 癌腫瘤細胞的治療 20 2-1-3.2 MNP注入血液系統之癌腫瘤細胞的治療 22 2-2 電噴霧機制 24 2-2-1 電噴霧原理 25 2-2-2 影響電噴霧的主要變因 32 2-2-3 電場收集裝置與粒子大小之間的關係 38 2-3 流體化床的設計原理 40 2-3-1 固態粒子移動經過流體的終端速度之理論 40 2-3-2 不同流動環境下之球形粒子的終端速度 42 2-4 儀器原理 44 2-4-1 熱重分析儀(Thermal Gravimetric Analyzer, TGA) 44 2-4-2 X光繞射分析(X-ray Diffraction ,XRD) 45 2-4-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 48 2-4-4 穿透式電子顯微鏡(Transmission Electron Microscopes, TEM) 51 2-4-5 原子力顯微鏡(Atomic force microscope, AFM) 53 2-4-6 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy) 56 第三章 實驗步驟 57 3-1 藥品與儀器 57 3-1-1 藥品 57 3-1-2 儀器 59 3-2 磁性流體的製備 60 3-2-1 氧化鐵奈米粒子之製備 60 3-2-2 氧化鐵奈米粒子之表面修飾 60 3-2-3 磁性流體的製備 62 3-3 磁性流體與單體、交聯劑、目標分子的混合 63 3-3-1 功能性單體交聯劑與目標分子之最佳化條件 63 3-3-1.1 蛋白質緩衝溶液的配製 63 3-3-2 各個成分所使用的濃度 63 3-3-3 磁性流體與各個成分的混合 64 3-4 電噴霧系統 65 3-4-1 導電矽基板之清洗 65 3-4-2 電噴霧之實驗流程 66 3-5 實驗架構與流程 71 第四章 實驗結果與討論 72 4-1 氧化鐵粒子與磁性流體的鑑定與分析 72 4-1-1 氧化鐵粒子的鑑定與表面修飾 72 4-1-2 磁性流體的TEM分析 74 4-1-3 Fe3O4奈米粒子與Fe3O4包覆單層與雙層十二碳酸的FTIR分析 75 4-1-4 Fe3O4奈米粒子與Fe3O4包覆單層與雙層十二碳酸的XRD分析 76 4-2 電噴霧法製備帶電奈米粒子 85 4-2-1 最適化磁性混合溶液之導電度的探討 85 4-2-2 角錐噴射模式(cone-jet mode)的探討 91 4-2-3 經由電噴霧程序後磁性複合溶液型態的改變 94 4-3 聚合後磁性複合粒子TEM型態分析 97 4-4 聚合後矽基板收集到磁性複合粒子的SEM型態分析 106 4-5 聚合後矽基板收集到磁性複合粒子的AFM型態分析 111 4-6 聚合後磁性複合奈米粒子的ELISA螢光偵測 114 第五章 綜合討論 116 5-1 研究達成情形综合討論. . 116 5-2 系統建立與儀器組裝過程之综合討論 120 5-2-1 電噴霧系統的建立 120 5-2-2 流體化床設備的建立 121 5-2-3 光化學反應裝置的建立 121 5-2-4 電暈放電裝置 122 參考文獻 129 自述 133

    [1] N. W. Turner, From 3D to 2D: A Review of the Molecular Imprinting of Proteins, Biotechnol. Prog, 2006, 22, 1474-1489.
    [2] B. Sellergren, Molecularly imprinted polymers: Man-made mimics of antibodies and their applications in analytical chemistry, Elsevier, 2001.
    [3] X. Pang, G. Cheng, and E. Tang, Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin, Anal. Bioanal, 2006, 384, 225-230.
    [4] J. T. Huang, J. Q. Zhang, and S. H. Zhang, Template imprinting amphoteric polymer for the recognition of preteins, Applied Polymer Science, 2004, 95, 358-361.
    [5] P. Spegel, L. Schweitz, and S. Nilsson*, Selectivity toward Multiple Predetermined Targets in Nanoparticle Capillary Electrochromatography, Anal. Chem., 2003, 75, 6608-6613.
    [6] C. Alexander, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, Molecular Recognition, 2006, 19, 106-180.
    [7] S. L. Bourke, J. Kohn., Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol)., Adv Drug Del Rev, 2003, 55, 447–66.
    [8] N. Nasongkla, Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems, Nano Lett, 2006, 6, 2427-2430.
    [9] G. Schmid, E., Clusters and Colloids, from Theory to Applications, VCH: New York, 1994.
    [10] F.X. Hu, K.G. Neoh, and E.T. Kang, Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles, Biomaterials, 2006, 27, 5725-5733.
    [11] C. J. Sunderland, Targeted Nanoparticles for Detecting and Treating Cancer, Drug Development Research, 2006, 67, 70-93.
    [12] P. Pradhan, Comparative Evaluation of Heating Ability and Biocompatibility of Different Ferrite-Based Magnetic Fluids for Hyperthermia Application, Biomedical Materials Research Part B: Applied Biomaterials, 2006, 10, 12-22.
    [13] P Verdijk, Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines, Int. J. Cancer, 2006, 120, 978-984.
    [14] N. Karapinar, Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation, Int. J. Miner. Process, 2003, 71, 45-54.
    [15] L. Diandra, L. Pelecky and R. D. Rieke, Magnetic Properties of Nanostructured Materials, Chem. Mater., 1996, 8, 1770-1783.
    [16] L. Shen, P. E. Laibinis, and T.A. Hatton*, Bilayer Surfactant Stabilized Magnetic Fluids: Synthesis and Interactions at Interfaces, Langmuir, 1999, 15, 447-453.
    [17] G. Kataby, Coating of amorphous iron nanoparticles by long-chain alcohols, Langmuir, 1998, 14, 1512-1515.
    [18] G. B. Shan, Immobilization of Pseudomonas delafieldii with magneticpolyvinyl alcohol beads and its application in biodesulfurization, Biotechnol Lett, 2003, 25, 1977-1981.
    [19] K. Burugapalli, V. Koul and A.K. Dinda, Effect of composition of interpenetrating polymer network hydrogels based on poly(acrylic acid) and gelatin on tissue response: a quantitative in vivo study, Biomed Mater Res, 2005, 26, 3995-4021.
    [20] Y. Zhang, N. Kohler and M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 2002, 23, 1553-1561.
    [21] A. K. Gupta and A.S.G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture,Mater Sci Mater Med, 2004, 15, 493-496.
    [22] A. K. Gupta and S. Wells, Surface modified superparamagnetic nanoparticles for drug delivery: preparation, characterisation and cytotoxicity studies, IEEE Trans Nanobiosci, 2004, 3, 66-73.
    [23] G. C. Hadjipanayis and R.W.Sheel, Nanophase materials: synthesis, properties and applications, NATO ASI Series, Applied Sciences, 1993, 260.
    [24] C. E. Sjogren, Magnetic characterization of iron oxides for magnetic resonance imaging, Magn Reson Med 1994, 31, 268-272.
    [25] G. W. Reimers and S. E. Khalafalla, Preparing magneticfluids by a peptizing method, US Bureau Mines Tech Rep, 1972, 59,
    [26] S. W. Charles and D.Fiorani, Magneticproperties of fine particles. North-Holland, Elsevier, 1992, 267-374.
    [27] S. Stoeva, Three-Layer Composite Magnetic Nanoparticle Probes for DNA,American Chemical Society, 2005.
    [28] J. Zeleny, The electrical discharge from liquid points and a hydrostatic method of measuring the electric intensity at their surface, Phys. Rev, 1914, 3, 69-91.
    [29] M. Cloupeau and B. Prunet-Foch., Electrostatic spraying of liquids in cone-jet mode, Electrostatics, 1989, 22, 135-159.
    [30] X. Wang, Magnetic Molecularly Imprinted Polymer Particles Synthesized by Suspension Polymerization in Silicone Oil, Macromolecular rapid communications, 2006, 27, 1180-1184.
    [31] G. Kong, R.D. Braun, and M.W. Dewhirst, Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size, Cancer Res., 2000, 60, 4440~4445.
    [32] C. G. Award, and H. J. Ewing, Textbook of Medical Physiology, 2000. 10th Ed.: p. 3.
    [33] D. Patrick O'Neal, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Letters, 2004, 209, 171~176.
    [34] W.F. Smyth, the use of electrospray mass spectrometry in detection and determination of molecules of biological significant, Trends in analytical chemistry, 1999, 18, 335~342.
    [35] S. L. Kaufman, special issue on ion formation mechanisms in electrospray, 1999.
    [36] J. D. Regele, Effects of capillary spacing on EHD spraying from an
    array of cone jets, Aerosol Science, 2002, 33, 1471–1479.
    [37] R. P. A. Hartman, ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE-JET MODE PHYSICAL MODELING OF THE LIQUID CONE AND JET, Aerosol Sci, 1999, 30, 823~849.
    [38] G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc.. 1964, 280, 383-397.
    [39] A. M. Ganan-Calvo, Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying, Phys. Rev. Lett., 1997, 79, 217-220.
    [40] A. M. Ganan-Calvo, The electrostatic spray emitted from an electrified conical meniscus, Aerosol Sic, 1994, 25, 1121-1142.
    [41] R. P. A. Hartman, JET BREAK-UP IN ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE-JET MODE, J. Aerosol Sci, 2000, 31, 65-95.
    [42] J. FernaHndez de la Mora and I.G. Loscertales, The current emitted by highly conducting Taylor cones, Fluid Mech. , 1994, 260, 155-184.
    [43] Ganan-Calvo, A.M., J. Davila, and A. Barre, Current and droplet size in the electrospraying of liquids scaling laws, Aerosol Sci, 1997, 28, 249-275.
    [44] S. N. Jayasinghe , Self-assembled nanostructures via electrospraying, Physica E, 2006, 33, 398~406.
    [45] I. W. Lenggoro, PREPARATION OF ZnS NANOPARTICLES BY ELECTROSPRAY PYROLYSIS, 2000, 31, 121~136.
    [46] K. L. Smith, M. S. Alexander, and J. P. W. Stark, Voltage effects on the volumetric flow rate in cone-jet mode electrospraying, Applied Physical, 2006, 99.
    [47] Q. I. Lu and J. A. Koropchak*, Corona Discharge Neutralizer for Electrospray Aerosols Used with Condensation Nucleation Light-Scattering Detection, Anal. Chem, 2004, 76, 5539-5546.
    [48] D. R. Chen, DESIGN AND EVALUATION OF A NANOMETER AEROSOL DIFFERENTIAL MOBILITY ANALYZER (Nano-DMA), Aerosol Sci., 1998, 29, 497-509.
    [49] C. J. Geankopolis, Transport processes and unit operation. 2001.
    [50] 陳冠宇, 電化學沉積之氧化亞銅其結晶結構及光電化學性質. 國立成功大學碩士班論文,2005.
    [51] B. D. Cullity and S. R. Stock, Element of X-Ray Diffraction. Prentice Hall, 2001. 3rd ed.
    [52] 林宛嫻, 熔膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究. 國立成功大學碩士班論文, 2006.
    [53] http://elearning.stut.edu.tw/caster/3/no3/3-4.htm. 2007.
    [54] R. W. Cornell and U. Schertmann, Iron oxides in the laboratory; preparation and characterization, Weinheim: VCH, 1991.
    [55] F. A. Cotton and G. Wilkinson, Advanced inorganic chemistry, New York: Wiley Interscience, 1988.
    [56] 林欣怡, 用微接觸技術製備肌紅蛋白質的人工抗體. 國立成功大學碩士論文,2006.
    [57] 鄭景軒, 磁性奈米微粒之二氧化矽被覆技術之研究. 國立成功大學碩士論文, 2003.
    [58] G. P. Gonz´alez ∗, P. F. Hernando, and J.S.D. Alegr´ıa, A morphological study of molecularly imprinted polymers using the scanning electron microscope, Analytica Chimica Acta, 2006, 557, 179–183.
    [59] N. Perez, M. J. Whitcombe and E. N. Vulfson, Surface Imprinting of Cholesterol on Submicrometer Core-Shell Emulsion Particles, Macromolecules, 2001, 34, 830-836.
    [60] J. R. Wank, S. M. George and A.W. Weimer*, Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD, Powder Technology, 2004, 142, 59– 69.

    下載圖示 校內:2012-08-24公開
    校外:2012-08-24公開
    QR CODE