| 研究生: |
蔡旻熹 Tsai, Min-Hsi |
|---|---|
| 論文名稱: |
多變量反應值最佳化 Multiple Response Optimization |
| 指導教授: |
馬瀰嘉
Ma, Mi-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 階 、距離函數 、多變量反應值最佳化 、模擬 |
| 外文關鍵詞: | simulation, rank, multiple response optimization, distance function |
| 相關次數: | 點閱:53 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在眾多分析多變量反應值最佳化(Multiple Response Optimization)的領域中,大多著重在各變量的反應函數上,即各個平均反應值的探討,直到Khuri and Conlon (1981) 提出距離函數(Distance Function)後,加入各個反應值間的相關性和預測反應函數變異性,才顯示出變異性的重要,進而影響到選取最佳解釋變數的操作值,然而模式誤差的變異並非在各個解釋變數的任一組合水準之選取條件上都會相同。另外,各反應變數限制他們於配適多項式迴歸上必須有相同階(rank)的模式,針對以上問題,本篇論文主要利用配適模型所產生的殘差,去建立反應變數個別和相互之變動情形,接著運用實驗設計的觀念,進一步去看解釋變數水準組合選取間的不同,而後,結合兩者概念,找出解釋變數最佳操作值。最後,利用一組實際例子作為應用,並藉由模擬的方法,去比較各種方法的優劣。
The most utilized territory of analyzing Multiple Response Optimization, the mean response of each variable is what we generally emphasize. It did not show the importance of variance in selecting the determination of optimum operating conditions until Khuri and Conlon (1981) introduced a procedure based on a distance function taken into consideration the variances and correlations of the responses. However, the variance error of the model in each operating condition of the explanatory variables is not all the same. Additionally, all response functions need to be represented by polynomial regression models of the same rank within the experimental region. Aiming at above question, in this paper we utilize the residuals generated by the fitted model to build the variances and correlations of the responses, and use the concept of experiment design to study the difference of each operating condition and end in finding the optimum operating condition of the explanatory variables. Finally, various methods are applied to one real data for example, and the simulation results are provided.
參考文獻
[1] Ames, A. E., Mattucci, N., MacDonald, S., Szonyi, G. and Hawkins, D. M. (1997). “Quality Loss Functions for Optimization Across Multiple Response Surfaces”, Journal of Quality Technology, 29, 339-346.
[2] Ankenman, B. E., and Biagaard, S. (1996). “Standard Errors for the Eigenvalues in Second-Order Response Surface Models”, Technometrics, 38, 238-246.
[3] Borkowski, J. J. (2003). “A Comparison of Prediction Variance Criteria for Response Surface Designs”, Journal of Quality Technology, 35, 70-77.
[4] Carlyle, W. M., Montgomery, D. C. and Runger, G. G. (2000). “Optimization Problems and Methods in Quality Control and Improvement”, Journal of Quality Technology, 32, 1-17.
[5] Chiao, C.-H. and Hamada, M. (2001). “Analyzing Experiments with Correlated Multiple Responses”, Journal of Quality Technology, 33, 451-465.
[6] Copeland, K. A. F. and Nelson, P. R. (1996). “Dual Response Optimization via Direct Function Minimization”, Journal of Quality Technology, 28, 331-336.
[7] Del Castillo, E. (1996). “Multiresponse Process Optimization via Constrained Confidence Regions”, Journal of Quality Technology, 28, 61-70.
[8] Del Castillo, E., Fan, S. K. and Semple, J. (1999). “Optimization of Dual Response Systems: A Comprehensive Procedure for Degenerate and Nondegenerate Problems”, European Journal of Operational Research, 112, 174-186.
[9] Del Castillo, E., Montgomery, D. C. and Mccarville, D. (1996). “Modified Desirability Functions for Multiple Response Optimization”, Journal of Quality Technology, 28, 337-345.
[10] Derringer, G. C. and Suich, R. (1980). “Simultaneous Optimization of Several Response Variable”, Journal of Quality Technology, 12, 214-219.
[11] Harrington, E. C. (1965). “The Desirability Function”, Ind. Qual. Control, 21, 494-468.
[12] Khuri, A. I. (1990). “Analysis of Multiresponse Experiments: A Review” in Statistical Design and Analysis of Industrial Experiments edited by S. Ghosh, Marcel Dekker, New York, NY, 231-246.
[13] Khuri, A. I. and Colon, M. (1981). “Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions”, Technometrics, 23, 363-375.
[14] Kim, K-J. and Lin, D. K. J. (2000). “Simultaneous Optimization of Mechanical Properties of Steel by Maximizing Experimental Desirability Functions”, Journal of the Royal Statistical Society Series, C49, 311-325.
[15] Lin, D. K. J. and Tu, W. (1995). “Dual Response Surface Optimization”, Journal of Quality Technology, 27, 248-260.
[16] Lind, E. E., Goldin, J. and Hickman, J. B. (1960). “Fitting Yield and Cost Response Surfaces”, Chemical Engineering Progress, 56, 62.
[17] Montgomery, D. C. (2001). Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York.