| 研究生: |
凃叡寰 Tu, Jui-Huan |
|---|---|
| 論文名稱: |
以熱注入法合成CuSbSe2晶體與其特性之研究 Chemical synthesis and characterization of CuSbSe2 crystallites using a hot injection method |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | CuSbSe2 、熱注入法 、十八烷基胺 、三乙二醇 |
| 外文關鍵詞: | copper antimony selenide, hot injection method, triethylenetetramine |
| 相關次數: | 點閱:96 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以熱注入法製備CuSbSe2晶體,首先於此製程下瞭解以十八烷基胺和三乙二醇等溶劑對於合成CuSbSe2晶體之影響,結果顯示以十八烷基胺為反應溶劑時,其易與陽離子反應,先形成氧化銻。而使用三乙二醇為反應溶劑時,當反應時間足夠時,即可獲得CuSbSe2之單一相。其生成過程為Cu3SbSe4因三乙烯四胺將其中之Cu2+還原至Cu+,轉變成CuSbSe2,釋放出多餘之銅離子與硒離子,銅離子會在Sb2Se3表面進行成核反應,最終變成CuSbSe2。當反應溫度為190 ℃時,未能提供足夠能量使三乙烯四胺發揮其還原之效果;當三乙烯四胺之添加量過少時,只能使Cu3SbSe4中Cu2+部分還原至Cu+,而添加量過多時,則還原性過高,而生成金屬銻。
In this study, a novel and facile hot injection method for the synthesis of single phase CuSbSe2 crystallites was developed by using low toxic triethylene glycol (TEG) as both the solvent and reducing agent and triethylenetetramine (TETA) as co-reducing agent. The effects of the amounts of TETA addition and reaction temperatures on the phase development were investigated. The crystalline structures, morphologies, chemical compositions and optical characterization of the synthesized products were investigated using XRD, TEM, EDS, XPS, and UV–Vis-NIR. A single phase CuSbSe2 crystallites can be obtained by using triethylene glycol as the solvent and reducing agent and triethylenetetramine as co-reducing agent. TETA addition plays a key role in determining the final phase. The presence of the intermediate phase, Cu3SbSe4 phase could be due to the existence of Cu2+, resulting from the insufficient reducibility in the solution. A sufficient amount of TETA can facilitate the reduction of Cu2+ into Cu+, leading to the preformed Cu3SbSe4 phase dissolved and reacted with Sb2Se3 to form CuSbSe2. Rietveld refinement of X-ray diffraction patterns confirmed formation of single CuSbSe2 phase without any second phase. The obtained CuSbSe2 phase had a direct band gap with the band gap value of 1.06 eV.
1. 林明獻,太陽電池技術入門,全華圖書股份有限公司,中華民國,2007年。
2. 戴寶通、鄭晃忠,太陽能電池技術手冊,台灣電子材料與元件協會,中華民國,2008年。
3. N. Alia A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B. Ul Haq, Y.Q. Fu, “Advances in nanostructured thin film materials for solar cell applications,” Renewable and Sustainable Energy Review, 59, 726-737, 2016.
4. Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F, Noufi R, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,” Prog. Photovolt: Res Appl., 7, 311–316, 1999.
5. L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, “Inverse Design of High Absorption Thin-Film Photovoltaic Materials,” Adv. Energy Mater., 3, 43-48, 2013.
6. M. Yuan, D. B. Mitzi, W. Liu, A. J. Kellock, S. J. Chey, and V. R. Deline, “Optimization of CIGS-Based PV Device through Antimony Doping,” Chem. Mater., 22, 285-287, 2010.
7. K. Takei, T. Maeda, T. Wada, “Crystallographic and optical properties of CuSbS2 and CuSb(S1-xSex)2 solid solution,” Thin Solid Films, 582, 263-268, 2015.
8. C. Yang, Y. Wang, S. Li, D. Wan, F. Huang, “CuSbSe2-assisted sintering of CuInSe2 at low temperature,” J. Mater. Sci., 47, 7085–7089, 2012.
9. A. Zyoud, R. S. Al-Kerm, R. S. Al-Kerm, W. Mansur, M. H.S. Helal, D. H. Park, G. Campet, N. Sabli, H. S. Hilal, “High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices,” Electrochim. Acta, 174, 472-479, 2015.
10. T. Y. Ko, K. W. Sun, “Optical and electrical properties of single Sb2Se3 nanorod,” J. Lumines., 129, 1747-1749, 2009.
11. T. Hurmaa, S. Kose, “XRD Raman analysis and optical properties of CuS nanostructured film,” Optik, 127, 6000-6006, 2016.
12. Y. Hashimoto, T. Satoh, S. Shimakawa, and T. Negami, “High efficiency CIGS solar cell on flexible stainless steel,” 3rd World Conference on Photovoltaic Enero Convemion, Japan, 574-577, 2003.
13. S. J. Fonash, “Solar Cell Device Physics,” Academic Press Inc., New York, 1981.
14. Nakada T, Mizutani M. “18% Efficiency Cd-Free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Japanese Journal of Applied Physics: Part 2 Letters 41, L165–L167, 2002.
15. H. Hahn, G. Frank, W. Klingler, A. D. Meyer and G. Störger, “Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur,” Z. Anorg. Allg. Chem., 271, 153–170, 1953.
16. A. Nisser, “Gallium as an Isovalent Substitution in CuInS2 Absorber Layers for Photovoltaic Applications, Freien Universität Berlin,” Ph. D dissertation, 2011.
17. D. J. Temple, A. B. Kehoe, J. P. Allen, G. W. Watson, and D. O. Scanlon, “Geometry, Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials ?,” J. Phys. Chem., C116, 7334−7340, 2012.
18. A. Rabhi, M. A. Kanzari, B. Rezig, “Optical and structural properties of CuSbS2 thin films grown by thermal evaporation method,” Thin Solid Films, 517(7), 2477-2480, 2009.
19. C. Garza, S. Shaji, A. Arato, E. Perez Tijerina, G. Alan Castillo, T. K. Das Roy, B. Krishnan, “p-Type CuSbS2 thin films by thermal diffusion of copper into Sb2S3,” Sol. Energy Mater. Sol. Cells, 95, 2001–2005, 2011.
20. Green M A. “Solar cells: operating principles, technology, and system applications, Englewood Cliffs,” NJ, Prentice-Hall, Inc., 288, 1982.
21. 劉智生、洪儒生,太陽能電池的高效率化,科學發展439期,2009年。
22. D. Li and X. Y. Qina, “Thermoelectric properties of CuSbSe2 and its dope compounds by Ti and Pb at low temperatures from 5 to 310 K,” J. Appl. Phys., 100, 023713, 2006.
23. L. I. Soliman, A. M. ABO EL SOAD, H. A. Zayed and S. A. EL Ghfar, “Structural and electrical properties of CuSbTe2, CuSbSe2 and CuSbS2 chalcogenide this films,” J. Exp. Theor. Phys. FIZIKA A, 11(4), 139–152, 2002.
24. D. Colombara, L.M. Peter, K.D. Rogers, J.D. Painter, S. Roncallo, “Formation of CuSbS2 and CuSbSe2 thin films via chalcogenisation of Sb–Cu metal precursors,” Thin Solid Films, 519, 7438–7443, 2011.
25. C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J. Moore, “Synthesis and processing of Cu-In-Ga-Se sputtering target,” Thin Solid Film, 332, 340-344, 1998.
26. M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Sol. Energy, 77, 749-756, 2004.
27. V. K. LaMer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc., 72, 4847-4848, 1950.
28. X. Peng, J. Wickham, A. P. Alivisatos, “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc., 120, 5343-5344, 1998.
29. C. B. Murray, C. R. Kagan, M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblites,” Annu. Rev. Mater. Sci., 30, 545-610, 2000.
30. Z. A. Peng, X. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc., 124(13), 3343-3353, 2002.
31. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew. “Synthesis of monodisperse spherical nanocrystals,” Chem. Int. Ed., 46, 4630-4660, 2007.
32. 游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,中華民國97年6月。
33. P. W. Voorhees, “The theory of ostwald ripening,” J. Stat. Phys., Vol. 38 Nos. 1/2, 1985.
34. I. M. Lifshitz, V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids, 19(1-2), 35–50, 1961.
35. D. Fairhurst, and R. W. Lee, “Aggregation, agglomeration-how to avoid aggravation when formulating particulate suspensions,” Drug Delivery Tech., Vol. 8, No. 8, 2008.
36. R. Lee Penn and Jillian F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2,” Am. Miner., 83, 1077-1082, 1998.
37. R. L. Penn, J. F. Banfiled, Geochim. Cosmochim, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Geochim. Cosmochim. Acta, 63, 1549-1557, 1999.
38. Y.-W. Jun, J.-S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.,” Angew. Chem. Int. Ed. Enql., 45(21), 3414-3439, 2006.
39. H. Cölfen, S. Mann, “Highteer-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew. Chem. Int. Ed. Engl., 42(21), 2350-2365, 2003.
40. T. Vossmeyer,G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “A “double-diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters,” Science, 267, 1476-1479, 1995.
41. W. P. Hsu, L. REnnquist, E. Matijevic, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV),” Langmuir, 4, 31-37, 1988.
42. S. Wohlrab, N. Pinna, M. Antonietti, H. CElfen,” Polymer-induced alignment of DL-alanime nanocrystals to crystalline mesostructured,” Chem. Eur. J., 11, 2903, 2005.
43. H. Cölfen, and M. Antonietti, “Mesocrystals to crystalline mesostructures,” Chem. Int. Ed., 44, 5576-5591, 2005.
44. D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo and Z. Zhou, “Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement,” J. Mater. Chem. A, 4, 4188-4193, 2016.
45. P. W. Majsztrik, M. Kirkham, V. Garcia-Negron, Edgar Lara-Curzio, E. J. Skoug, D. T. Morelli, “Effect of thermal processing on the microstructure and composition of Cu–Sb–Se compounds,” J. Mater. Sci., 48, 2188–2198, 2013.
46. 黃瑞雄、顏溪成,漫談電化學,科學發展359期,2002年11月
47. Y. Rodríguez-Lazcano, M. T. S. Nair, and P. K. Nair, “Photovoltaic p-i-n Structure of Sb2S3 and CuSbS2 Absorber Films Obtained via Chemical Bath Deposition,” J. Electrochem. Soc., 152(8), G635-G638, 2005.
48. D. Tang, J. Yang, F. Liu, Y. Lai , J. Li , Y. Liu, “Growth and characterization of CuSbSe2 thin films prepared by electrodeposition,” Electrochim. Acta, 76, 480–486, 2012.
49. Y. A. Yang, H. M. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. 117(41), 6870-6873, 2005.
50. S. H. Chang, B. C. Chiu, T. L. Gao, S. L. Jheng and H. Y. Tuan, “Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes,crystal phases, and morphologies,” Crystengcomm, 16, 3323–3330, 2014.
51. K. Ramasamy, H. Sims, W. H. Butler, and A. Gupta, “Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper−Antimony−Sulfide,” Chem. Mater., 26, 2891−2899, 2014.
52. Y. Zou, J. Jiang, “Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals,” Mater. Lett., 123, 66–69, 2014.
53. Y. Liu, J. Yang, E. Gu, T. Cao, Z. Su, L. Jiang, C. Yan, X. Hao, F. Liu and Y. Liu, “Colloidal synthesis and characterisation of Cu3SbSe3 nanocrystals,” J. Mater. Chem., A2, 6363–6367, 2014.
54. V. B. Ghanwat, S. S. Mali, R. M. Mane, P. S. Patil, K. H. Chang, P. N. Bhosale, “Thermoelectric properties of nanocrystalline Cu3SbSe4 thin films deposited by a self-organized arrested precipitation technique,” New J. Chem, 39, 5661-5668, 2015.
55. J. Zhou, G. Q. Bian, Q. Y. Zhu, Y. Zhang, C. Y. Li, J. Dai, “Solvothermal crystal growth of CuSbQ2 (Q = S, Se) and the correlation between macroscopic morphology and microscopic structure,” J. Solid State Chem., 182, 259–264, 2009.
56. T. Henriet, B. Nicolaï, C. Ghaddar, M. Barrio, B. Do, N. Yagoubi, J. L. Tamarit, I. B. Rietveld, “Triethylenetetramine Dihydrochloride: Interactions and Conformations in Two Anhydrous Structures and a Hydrate,” Cryst. Growth Des., 15, 348-357, 2015.