| 研究生: |
卓思皜 Cho, Szu-Hao |
|---|---|
| 論文名稱: |
十二烷基硫酸鈉對聚丙烯酸-聚氧化乙烯分子間複合物的分解機制探討 Dissociation of Poly(acrylic acid)-Poly(ethylene oxide) Interpolymer Complexes by Sodium Dodecylsulfate: a Mechanism Study |
| 指導教授: |
侯聖澍
Hou, Sheng-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 聚丙烯酸-聚氧化乙烯分子間複合物 、十二烷基硫酸鈉 、核磁共振光譜 |
| 外文關鍵詞: | PAA-PEO IPCs, SDS, NMR |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由氫鍵作用力,聚丙烯酸 (poly(acrylic acid),PAA)與聚氧化乙烯 (poly(ethylene oxide),PEO)在水溶液中可形成一微結構隨著溶液pH值改變的分子間複合物,此分子間複合物被廣泛的應用在醫藥領域上。此篇研究中,我們添加陰離子型界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)至PAA-PEO水溶液中,藉此模擬生物系統中的兩性分子對PAA-PEO分子間複合物微結構的影響。
根據穿透度計以及pyrene螢光光譜法的實驗結果,SDS的類微胞叢集是影響PAA-PEO分子間複合物微結構的重要角色,此類微胞叢集會改變複合物的區域結構,進而影響其尺寸,因此從穿透度圖上可看見一明顯V型過渡區。進一步利用一維核磁共振(1H NMR)和二維核磁共振光譜(2D NOESY NMR)研究此分子間複合物和SDS之間的競合行為,可歸納出在SDS濃度低於臨界叢集濃度時 (critical aggregate concentration,cac),SDS與分子間複合物之間並無交互作用力存在,而在濃度高於臨界叢集濃度,SDS的類微胞叢集開始與PEO交互作用,但與PAA之間並沒有交互作用力產生,此PEO-SDS交互作用力會干擾PAA與PEO之間的氫鍵作用力,使其斷裂,影響分子間複合物疏水性並進而分解它,但同時,類微胞叢集也會與多條PEO高分子鏈交互作用,產生交聯的效用,使分子間複合物聚集,此兩種機制的競爭平衡 (分解與聚集)就是穿透度變化的主要原因,而此競爭平衡與SDS濃度有很大相關。Pyrene-labelled PAA法也證實了這兩種機制的存在,從螢光激發物的強度可明顯看出隨著SDS濃度改變,複合物有聚集和分解的現象。在這篇研究中,我們不僅闡明了PAA-PEO-SDS三成分之間的作用力強度,也提出並解釋SDS對PAA-PEO分子間複合物的交互作用機制。
The interpolymer complexes (IPCs) formed through hydrogen bonding between poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) has attracted intensive interests because of its pratical applications in pharmaceuticals. In this study, the anionic surfactant, sodium dodecylsulfate (SDS) was added to mimic the the microstructure change of PAA-PEO IPCs caused by amphiphilic molecules in biological systems. The microctrustures of PAA-PEO IPCs are found to be varied with the pH of the solution as well as the amount of SDS added.
The competitive/cooperative characteristics between IPCs and SDS are studied in terms of pyrene solubilization, 1H-NMR, 2D 1H-1H NOESY and pyrene-labelled PAA. PEO could associate with the added SDS through the ionic-dipole interaction. Also, there exists hydrophobic interaction between PAA and SDS. At low SDS concentations, SDS is found to have the ability to crosslink different IPCs to form the local network. However, at high SDS concentrations, hydrogen bonding interactions between PAA and PEO are perturbed by PEO-SDS interactions. The detailed dissociation mechaniem of PAA-PEO IPCs in the presence of SDS is proposed.
[1] Saito, S. Colloid. Polym. Sci. 1982, 260, 613.
[2] Bailey, F. E.; Lundverg, R. D.;Callard, R. W. J. Polym. Sci., PartA 1964, 2, 845.
[3] Ikawa, T.; Abe, K.; Honda, K.; Tsuchida, E. J. Polym. Sci., Polymer Chemistry Ed. 1975, 13, 1505.
[4] Khutoryanskiy, V. V.; Dubolazov, A. V.; Nurkeeva, Z. S.; Mun, G. A. Langmuir 2004, 20, 3785.
[5] Maltesh, C.; Somasundaran, P.; Kulkarni, R. A.; Gundiah, S. Langmuir 1991, 7, 2108.
[6] Osada, Y. J. Polym. Sci., Polym. Chem. Ed. 1979, 17, 3485.
[7] Pradip; Maltesh, C.; Somasundaran, P.; Kulkarni, R. A.; Gundiah, S. Langmuir 1991, 7, 2108.
[8] Jin, S. P.; Liu, M. Z.; Chen, S. L.; Chen, Y. Eur. Polym. J. 2005, 41, 2406.
[9] Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Mun, G. A.; Biktekenova, A. B.; Kadlubowski, S.; Shilina, Y. A.; Ulanski, P.; Rosiak, J. M. Colloids Surf., A 2004, 236, 141.
[10] Nurkeeva, Z. S.; Mun, G. A.; Khutoryanskiy, V. V.; Bitekenova, A.B.;Dubolazov, A. V.; Esirkegenova, S. Z. European Physical Journal E 2003, 10,65.
[11] Khutoryanskiy, V. V. International Journal of Pharmaceutics 2007, 334, 15.
[12] Meyers, D. Surfaces, interfaces, and colloids : principles and applications. VCH Publishers: New York, N.Y., 1991.
[13] Schick, M. J. J. Phys. Chem. 1964, 68, 3585.
[14] Tadros, T. F. Applied surfactants : Principles and applications. Wiley-VCH: Weinheim, 2005.
[15] 余幸芳 十二烷基硫酸鈉與聚丙烯酸/聚(N-乙烯吡咯烷酮)氫鍵複合物之交互作用機制研究 國立成功大學化學工程學系碩士論文 (2011)
[16] Holmberg, K. Surfactants and polymers in aqueous solution. John Wiley & Sons: Hoboken, NJ, 2003.
[17] Desmond Goddard, E. Polymer/ Surfactant Interaction. In Principles of Polymer Science and Technology in Cosmetics and Personal Care, InformaHealthcare: 1999.
[18] Jones, M. N. J. Colloid Interface Sci. 1967, 23, 36.
[19] Schwuger, M. J. J. Colloid Interface Sci. 1973, 43, 491.
[20] Lange, H. Colloid. Polym. Sci. 1971, 243, 101.
[21] Arai, H.; Murata, M.; Shinoda, K. J. Colloid Interface Sci. 1971, 37, 223.
[22] Turro, N. J.; Baretz, B. H.; Kuo, P. L. Macromolecules 1984, 17, 1321.
[23] Yan, P.; Xiao, J.-X. Colloids Surf., A 2004, 244, 39.
[24] Lissi, E. A.;Abuin, E. Journal of Colloid and Interface Science 1985, 105, 1.
[25] Goddard, E. D. Colloids Surf. 1986, 19, 255.
[26] Yuan, H. Z.; Luo, L.; Zhang, L.; Zhao, S.; Mao, S. Z.; Yu, J. Y.; Shen, L. F.;Du, Y. R. Colloid. Polym. Sci. 2002, 280, 479.
[27] Cabane, B. J. Phys. Chem. 1977, 81, 1639.
[28] Chari, K.; Antalek, B.; Lin, M. Y.; Sinha, S. K. J. Chem. Phys. 1994, 100,5294.
[29] Gjerde, M. I.; Nerdal, W.; Høiland, H. J. Colloid Interface Sci. 1996, 183,285.
[30] Gjerde, M. I.; Nerdal, W.; Høiland, H. J. Colloid Interface Sci. 1998, 197,191.
[31] Roscigno, P.; Asaro, F.; Pellizer, G.; Ortona, O.; Paduano, L. Langmuir. 2003, 19, 9638.
[32] Tzeng, J.-K.; Hou, S.-S. Macromolecules 2008, 41, 1281.
[33] Turro, N. J.;Lei, X.G.;Ananthapadmanabhan, K.P.;Aronson, M. Langmuir. 1995, 11,2525.
[34] Aten, J. A. H. W. J. Chem. Phys. 1948, 16, 636.
[35] Markovitz, H.; Kimball, G. E. Journal of Colloid Science 1950, 5, 115.
[36] Flory, P. J.; Osterheld, J. E. J. Phys. Chem. 1954, 58, 653.
[37] Takahashi, A.; Nagasawa, M. J. Am. Chem. Soc. 1964, 86, 543.
[38] Noda, I.; Tsuge, T.; Nagasawa, M. J. Phys. Chem. 1970, 74, 710.
[39] Kay, P. J.; Treloar, F. E. Makromol. Chem. 1974, 175, 3207.
[40] Okamoto, H.; Wada, Y. J. Polym. Sci., Polym. Phys. Ed. 1974, 12, 2413.
[41] Staikos, G.; Bokias, G. Polym. Int. 1993, 31, 385.
[42] Bokias, G.; Staikos, G. Polymer 1995, 36, 2079.
[43] Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. Macromolecules 1995, 28, 1859.
[44] Horkay, F.; Tasaki, I.; Basser, P. J. Biomacromolecules 2000, 1, 84.
[45] Anghel, D. F.; Toca-Herrera, J. L.; Winnik, F. M.; Rettig, W.; von Klitzing, R. Langmuir 2002, 18, 5600.
[46] Binana-Limbele, W.; Zana, R. Colloids Surf. 1986, 21, 483.
[47] Wang, C.;Tam, K.C. J. Phys. Chem. B 2005, 109, 5156.
[48] Iliopoulos, I.; Audebert, R. J. Polym. Sci:Part A 1988, 26, 275.
[49] Iliopoulos, I.; Audebert, R. Eur. Polym. J. 1988, 24, 171.
[50] Das, S.; Joseph, M. T.; Sarkar, D. Langmuir 2013, 29, 1818.
[51] Chen, Y.; Pang, Y.; Wu, J.; Su, Y.; Liu, J.; Wang, R.; Zhu, B.; Yao, Y.; Yan, D.; Zhu, X.; Chen, Q. Langmuir 2010, 26, 9011.
[52] Bard, A. J.; Faulkner, L. R. Electrochemical methods : fundamentals and applications. Wiley: New York, 2001.
[53] Koetz, J.; Kosmella, S. Polyelectrolytes. In Polyelectrolytes and Nanoparticles, Springer Berlin Heidelberg: 2007; pp 5.
[54] Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis. Thomson Brooks/Cole: Belmont, CA, 2007.
[55] Kalyanasundaram, K.;Thomas, J. K. Journal of the American Chemical Society 1977, 99, 2041.
[56] Winnik, F. M. Chem. Rev. 1993, 93, 587.
[57] Choi, J.; Rubner, M. F. Macromolecules 2005, 38, 116.
[58] Hao, J. ; Yuan, G. ; He, W. ; Cheng, H.; Han, C.; Wu, C. Macromolecules 2010, 43, 2002.
校內:2019-09-02公開