簡易檢索 / 詳目顯示

研究生: 王士豪
Wang, Shi-Hao
論文名稱: 奈微米磁性元件之模擬研究
Nano-Scale Simulation of Micro Magnetic Device
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 114
中文關鍵詞: 退火沉積薄膜分子動力學磁性元件
外文關鍵詞: annealing, deposition, thin film, magnetic device, molecular dynamics
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學模擬半導體製程,希望藉由理論模擬的方式提供最佳的製程參數,並期望能有效的節省製作成本。模擬離子團簇束製程製作Al2O3沉積磁性薄膜,由結果發現入射的Al2O3團簇愈小,薄膜中結構完整的Al2O3愈多;由小的入射動能沉積出的薄膜,表面粗糙度隨入射動能增加而變小,當入射動能大於產生最小粗糙度的入射動能時,粗糙度隨入射動能增加而變大。在Co/Cu雙層結構退火處理模擬中,發現由於Co原子的熔點高於Cu原子,故在流動及擴散的能力較不如Cu原子,因此Co/Cu交界面處之粗糙度在退火處理的過程中,對溫度的變化較不如Cu薄膜表面來的敏感;然而,在Co/Cu交界面處之擴散情況卻也會隨著退火處理溫度的增加,Co原子與Cu原子混合的程度也會隨著增加。

    This article refers that by using molecular dynamics to simulate semiconductor production procedure is hopeful to provide a best production procedure parameter through theory simulation and anticipate retrenching the producing cost effectively. The simulation of the Ionized Cluster Beam Deposition (ICBD) produces Al2O3 deposition magnetism thin film and from the outcome it can find that the smaller the incident Al2O3 cluster is, the more Al2O3 of the complete structure in the thin film is ; The thin film whose roughness of the surface will become smaller following the increased incident energy is deposited from small incident energy. When the incident energy is higher than the incident energy which brings the smallest roughness, the roughness will get bigger following the increased incident energy. From the simulation of the annealing treatment in the Co/Cu two-layer structure, it can find that since the melt of Co Atom is higher than Cu Atom, the efficiency of the fluidity and the migration of Co Atom is less good than Cu Atom. Therefore in the process of the annealing treatment, the roughness of the Co/Cu interface is less sensitive to the variety of the temperature than the surface of the Cu thin film; however, the migration status in the Co/Cu interface will be increased following the temperature of annealing treatment and the intermixture status of Cu Atom and Cu Atom will be raised as well.

    論文目錄 目錄 中文摘要 英文摘要 誌謝 圖目錄 表目錄 符號說明 第一章 緒論 1-0 前言......................................................................1 1-1 磁阻效應簡介..............................................................3 1-1-1 巨磁阻效應..............................................................3 1-1-2 穿隧磁阻效應............................................................6 1-2 磁阻元件製程模擬之研究動機與目的..........................................7 1-2-1 穿隧磁阻阻絕層之薄膜沉積................................................7 1-2-2 巨磁阻薄膜之退火製程...................................................14 第二章 分子動力學理論 2-0 前言.....................................................................19 2-1 運動方程式...............................................................20 2-2 物理模型.................................................................21 2-2-1 物理參數與無因次化.....................................................21 2-2-2 邊界條件...............................................................23 2-2-2-A 幾何邊界.............................................................23 2-2-2-B 熱邊界...............................................................28 2-3 數值方法.................................................................29 2-3-1 Gear五階預測修正算法...................................................29 2-3-2 Leap-Frog方法..........................................................33 2-4 勢能函數選取.............................................................34 2-4-1 二體勢能...............................................................36 2-4-2 多體勢能...............................................................38 2-5 計算資料統計.............................................................42 2-5-1 截斷半徑法.............................................................42 2-5-1-A Verlet表列法.........................................................42 2-5-1-B Cell link表列法......................................................46 2-5-1-C Verlet表列結合Cell link表列法........................................48 2-5-2 流程圖.................................................................50 2-5-2-A 薄膜沉積.............................................................51 2-5-2-B 退火模擬.............................................................52 第三章 穿隧磁阻阻絕層之薄膜沉積製程模擬結果與討論 3-1 物理模型.................................................................53 3-2 結果與討論...............................................................55 第四章 巨磁阻退火處理之模擬結果與討論 4-1 物理模型.................................................................66 4-2 結果與討論...............................................................68 第五章 建議與結論 5-1 結論...........................................................................88 5-2 建議與未來展望...........................................................91 參考文獻.....................................................................92

    [1]金重勳主編,”磁性技術手冊”,中華民國磁性技術協會,(2002)
    [2]M. Julliere, “Tunneling between ferromagnetic films”, Phys. Lett. A 54,225-226,(1975).
    [3]J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, “Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions”, Phys. Rev. Lett. 74, 3273-3276, (1995).
    [4]W.J. Gallagher, S.S.P. Parkin, Y. Lu, X.P. Bian, A. Marley, K.P. Roche, R.A. Altman, S.A. Rishton, C. Jahnes, T.M. Shaw, G. Xiao, “Microstructured magnetic tunnel junctions (invited)”, J. Appl. Phys. 81, 3741-3746, (1997).
    [5]S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O'Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited)”, J. Appl. Phys. 85(8), 5828-5833, (1999).
    [6]J.C. Slonczewski, “Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier”, Phys. Rev. B 39(10), 6995-7002. (1989).
    [7]Y. Ando, J. Murai, T. Miyazaki, “Analysis of the interface in ferromagnet/insulator junctions by inelastic-electron-tunneling-spectroscopy”, J. Magn. Magn. Mater., Vol.198-199, 161-163. (1999).
    [8]R.L. Comstock, J. Mater. “Review modern magnetic materials in data storage”, Sci.Mater. Electron. 13, 509-523. (2002).
    [9]S. Tehrani, B. Engel, J.M. Slaughter, E. Chen, M. DeHerrera, M. Durlam, P. Naji, R. Whig, J. Janesky, J. Calder, “Recent developments in magnetic tunnel junction MRAM”, IEEE Trans. Magn. 36(5), 2752-2757. (2000)
    [10]H. Kyung, C.S. Yoon, C.K. Kim, “Microstructure and electrical properties of annealed tunneling magnetoresistive junctions with plasma oxidized insulation layer”, Mater. Sci. Eng. BSolid State Mater. Adv. Technol. 90, 55-59. (2002).
    [11]M. Urech, V. Korenivski, D.B. Haviland, “Magnetoresistance in Co/AlOx/Co tunnel junction arrays”, J. Magn. Magn. Mater. 249, 513-518. (2002 ).
    [12]Y. Ando, M. Yokota, N. Tezuka, T. Miyazaki, “Influence of interlayer roughness on magnetoresistive effect of ferromagnetic tunneling junctions”, J. Magn. Magn. Mater. 198-199, 155-157, (1999)
    [13]J.R. Fermin, A. Azevedo, B. Li, F.M. de Aguiar, S.M. Rezende, “Magnetic properties of Ti/Fedouble layers grown on MgO(100) by direct current magnetron sputtering”, J. Appl. Phys. 85(8), 4943-4954. (1999)
    [14]S. Tanoue, A. Yamasaki, “Anomalous behavior of Co insertion to Al2O3 in CoFe/Al2O3/NiFe tunnel junctions”, J. Appl. Phys. 88(8), 4764-4767. (2000)
    [15]W. Zhu, C.J. Hirschmugl, A.D. Laine, B. Sinkovic, S.S.P. Parkin, “Determination of the thickness of Al oxide films used as barriers in magnetic tunneling junctions”, Appl. Phys. Lett. 78(20), 3103-3105. (2001)
    [16]T. Miyazaki, S. Kumagai, T. Yaoi, “Spin tunneling in Ni-Fe/Al2O3/Co junction devices (invited)”, J. Appl. Phys. 81(8), 3753-3757. (1997)
    [17]N. Tezuka, M. Oogane, T. Miyazaki, “Applied vpltage and temperature dependence of tunneling magnetoresistance”, J. Magn. Magn. Mater. Vol.198-199, 149-151. (1999)
    [18]K. Inomata, Y. Saito, K. Nakajima, M. Sagoi, “Double tunnel junctions for magnetic random access memory devices”, J. Appl. Phys. 87(9), 6064-6066. (2000)
    [19]K. Takanashi, S. Mitani, J. Chiba, H. Fujimori, “Scanning tunneling microscopy investigation of single electron tunneling in Co-Al-O and Cu-Al-O granular films”, J. Appl. Phys. 87(9), 6331-6333. (2000)
    [20]W.H. Ha, M.H. Choo, S. Im, “Electrical properties of Al2O3 film deposited at low temperatures”, J. Non-Cryst. Solids 303, 78-82. (2002)
    [21]K. Kakishita, S. Kondo, T. Suda, “Photoresponse of zine phosphide thin films grown by ionized cluster beam deposition”, Nucl. Instrum. Methods Phys. Res. Sect. BBeam Interact. Mater. Atoms 121, 175-178. (1997)
    [22]J.Q. Xie, Y. Zheng, J.Y. Feng, “Investigations on structural properties of carbon nitride films synthesized by reactive ionized cluster beam deposition”, Nucl. Instrum. Methods Phys. Res. Sect. BBeam Interact. Mater. Atoms 122, 239-243. (1997)
    [23]E.Z. Kurmaev, K. Endo, T. Ida, T. Otsuka, S.Y. Kim, G.S. Chang, A. Moewes, N.Y. Kim, C.N. Whang, D.L. Ederer, “The electronic structure of TPD films grown by different methods”, Org. Electron. 3, 15-21. (2002)
    [24]N. Tezuka, M. Oogane, T. Miyazaki, “ Applied voltage and temperature dependence of tunneling magnetoresistance “, J. Magne. Magne. Mater., 198-199, 149-151.(1999).
    [25]Y. Ando, J. Murai, T. Miyazaki, “ Analysis of the interface in ferromagnet/ insulator junctions by inelastic-electron-tunneling-spectroscopy “, J. Magne. Magne. Mater., 198-199, 161-163, (1999).
    [26]Y. Ando, M. Yokota, N. Tezuka, T. Miyazaki, “ Influence of interlayer roughness on magnetoresistive effect of ferromagnetic tunneling junctions “, J. Magne. Magne. Mater., 198-199, 155-157,(1999).
    [27]H. Kyung, C. S. Yoon, C. K. Kim, “ Microstructure and electrical properties of magnetic tunneling junction: NiFe/Co/Ta/Al-oxide/Co “,Mater. Sci. Engine. B90, 13-15,(2002).
    [28]S. Tanoue and A. Yamasaki, “ Anomalous behavior of Co insertion to Al2O3 in CoFe/Al2O3/NiFe tunneling junctions “, J. Appl. Phys., 88(8), 4764-4767,(2000)
    [29]C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriousu, B. A. Gurney and M. L. Williams, IEEE Trans. on Magn. 30, 3801 (1994).
    [30]Hidefumi Yamamoto and Kazuhiko Yamada, “The application of giant MR films to magnetic devices”, Mater. Science and Engineering B 31(1-2), 207-211 (1995).
    [31]S.J. Cho, D.K. Park, T.W. Kwon, D.S. Yoo, I.G. Kim, “The role of PI interlayer deposited by ionized cluster beam on the electroluminescence efficiency”, Thin Solid Films 417, 175-179, (2002)
    [32]A.R Lima, M.S. Ferreira, J. d’Albuquerque e Castro, R.B. Muniz, “Simulational study of annealing effects in multilayers”, J. Magn. Magn. Mater. 223-230, 666-668 (2001).
    [33]H. Laidler, I. Pape, C.I. Gregory, B.J. Hickey, B.K. Tanner, “X-ray and magnetoresistance measurements of annealed Co/Cu multilayers”, J. Magn. Magn. Mater. 154, 165-174 (1996).
    [34]K. M. Chow, W.Y. Ng, L.K. Yeung, “Interdiffusion of Cu substrate/electrodeposits for Cu/Co, Cu/Co-W, Cu/Co/Ni andCu/Co-W/Ni systems”,Surface and Coatings Technology 99, 161-170 (1998).
    [35]K. Rätzke, M.J. Hall, D.B. Jardine, W.C. Shih, R.E. Somekh, A.L. Greer, “Evolution of microstructure and magnetoresistance in Co/Cu multilayers during annealing”, J. Magn. Magn. Mater. 204, 61-67 (1999).
    [36]W. Brückner, S. Baunack, J. Thomas, M. Hecker, C.M. Schneider, “Interdiffusion, stress, and microstructure evolution during annealing in Co/Cu/Co trilayers”, J. Appl. Phys. 91(12), 9696-9700 (2002)
    [37]H. Errahmani, A. Berrada, G. Schmerber, A. Dinia, “Correlation between magnetotransport properties and the microstructure of the Co20Cu80 granular alloy”, J. Magn. Magn. Mater. 238, 145-154 (2002).
    [38]D. D. Tang, P. K. Wang, V. S. Spcriosu, S. Le and K. K. Kung, IEEE Trans. on Magn. 31, 3206 (1995).
    [39]K. Matsuyama, H. Asada, S. Ikeda and K. Taniguchi, IEEE Trans. on Magn. 33, 3283 (1997).
    [40]A. S. Ebrahim, R. S. Huang and C. T. Kowk, A Novel Optical Accelerometer, IEEE electron device letters, 16, 166 (1995).
    [41]M. Suzuki, T. Ohwaki, Y. Taga, “Durable giant magnetoresistive sensors using Co/Cu superlattices”, Thin Solid Films 304(1-2), 333-338 (1997).
    [42]Y. Saito, S. Hirasawa, T. Saito, H. Nezu, H. Yamaguchi and N. Owada, IEEE Trans. Semiconduct. Manufact., 10, 131 (1997).
    [43]M. H. Su, C. C. Hwang, J. G. Chang and S. P. Ju, “Molecular dynamics simulation of copper reflow in the damascene process”, J. Vac. Sci. Technol. B, 20(5), 1853-1865, (2002).
    [44]J. M. Haile, “ Molecular Dynamics Simulation “, John Wiley & Sons, New York, (1992).
    [45]M. P. Allen et al., “ Computer Simulation in Chemical Physics, Series C: Mathematical and Physical Science “, Vol. 397, Kluwer Academic, Dordrecht,(1992).
    [46]M. Meyer et al., “ Computer Simulation in Material Science, Series E: Applied Science “, Vol. 397, Kluwer Academic, Dordrecht,(1991).
    [47]S. Erkoc, “ Annual Reviews of Computational IX “, World Scientific Publishing Company, Singapore, 1-103,(2001)
    [48]H. Rafii-Tabar, “ Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations “, Physics Reports, 325, 239-310,(2000).
    [49]R. Smith et al., “Atomic & Ion Collisions in Solids and at Surfaces ”, Cambridge University Press, London, (1997).
    [50]G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, “ Intermolecular Force“, Oxford University Press, London, (1987).
    [51]P. L. Huyskens et al., “ Intermolecular Force“, Springer-Verlag, Berlin, (1991).
    [52]M. Rigby, E. B. Smith, W. A. Wakeham, and G. C. Maitland, “ The Force between Molecules“, Oxford University Press, London, (1986).
    [53]V. Rosato et al., “Thermodynamical and Structural properties of f.c.c. transition metals using a simple tight-binding model”,Philosophical Magazine A, 59(2), 321-336, (1989).
    [54] G. Mazzone et al., “Molecular-Dynamics calculations of thermodynamics properties of metastable alloys”, Phy. Rev. B, 55, 837-842, (1997).
    [55]I. Meunier, G. Tréglia, B. Legrand, R. Tétot, B. Aufray, and J. M. Gay, “Molecular dynamics simulations for the Ag/Cu(111) system: from segregated to constitutive interfacial vacancies”, Applied Surface Science, Vol.162-163, 219-226, (2000).
    [56]F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys”, Phys. Rev. B 48, 22-33 (1993).
    [57]R.W. Grimes, S.P. Chen, “The influence of ion size on the binding of a charge compensating cobalt vacancy to M3+ dopant ions in CoO”, J. Phys. Chem. Solids 61, 1263-1268, (2000).
    [58]Mark Wilson, Martin Exner, Yin-Min Huang, and Michael W. Finnis, ” Transferable model for the atomistic simulation of Al2O3”, Phys. Rev. B, 54(22), 15683-15689, (1996).
    [59]D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, (1997).
    [60]M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Oxford Science, London, (1991).
    [61]D. Frenkel and B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego, (1996).
    [62]N. Levanov, V.S. Stepanyuk, W. Hergert, O.S. Trushin, K. Kokko, “Molecular dynamics simulation of Co thin films growth on Cu(001)”, Surf. Sci. 400, 54-62, (1998).
    [63]C. C. Hwang, J. G. Chang, G. J. Huang, S. H. Huang, “Investigation of Cluster Size and Cluster Incident Energy Effect on Film Surface Roughness for Ionized Cluster Beam Deposition”, J. Appl. Phys. 92, 5904, (2002).
    [64]C. I. Weng, C. C. Hwang, C. L. Chang, J. G. Chang, S. P. Ju, “Molecular Dynamics Simulation of Thin Film Growth on Giant Magnetoresistance Corrugated Structures”, Phys. Rev. B 65, 195420, (2002).
    [65]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, “Topographic study of sputter-deposited film with different process parameters”, Journal of Applied Physics, 89, 7825 (2001)
    [66]S. P. Ju, C. I. Weng, J. G. Chang and C. C. Hwang, “Molecular Dynamics Simulation of Sputter Trench-filling Morphology in Damascene Process”, J. Vac. Sci. Technol. B, 20(3), 946 (2002).
    [67]Y. Hu, S.B. Sinnott, “A molecular dynamics study of thin-film formation via molecular cluster beam deposition: effect of incident species”, Surf. Sci. 526, 230-242, (2003).

    下載圖示 校內:2006-08-29公開
    校外:2008-08-29公開
    QR CODE