| 研究生: |
廖盈貴 Liao, Ying-Guei |
|---|---|
| 論文名稱: |
姬蝴蝶蘭兩側對稱基因之功能探討 Characterization of CYCLOIDEA-like genes in Phalaenopsis equestris |
| 指導教授: |
蔡文杰
Tsai, Wen-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 姬蝴蝶蘭 、CYCLOIDEA基因 |
| 外文關鍵詞: | Phalaenopsis equestris, CYCLOIDEA genes |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝴蝶蘭優雅的花型屬於兩側對稱,並具有花瓣高度特化而成的唇瓣,其對稱形式扮演吸引昆蟲授粉的重要功能。前人關於兩側對稱的研究指出CYCLOIDEA基因會透過抑制細胞增生而影響花型的大小,進而改變花瓣的形狀,造成對稱性的差異。CYC基因屬於TCP轉錄因子,而TCP基因具有影響植物生長發育的功能。在金魚草的研究中指出,CYC基因會抑制背側花瓣的大小並且抑制背側花粉的成熟。在苦苣科與菊科的研究顯示,該類CYC/ TB1基因會抑制細胞增生並且與其他轉錄因子結合調控下游基因。本研究由姬蝴蝶蘭中選殖出三個CYC/ TB1相似基因並命名為PeCYC1、PeCYC2和PeCYC3。序列比對分析結果顯示,PeCYC具有TCP轉錄因子典型的TCP domain和R domain。時間與空間的表現分析顯示,PeCYC1與PeCYC2在早期花苞發育時期開始表現,並且高度表現在兩側萼片與唇瓣。此外,PeCYC1與PeCYC2在三唇瓣突變株姬蝴蝶蘭的不同花器表現分析顯示, PeCYC1與PeCYC2除了表現於兩側萼片與唇瓣外,也異位表現於兩側類唇瓣的花瓣中。蛋白質交互作用分析顯示,PeCYC1與PeCYC2可以和B群MADS-box蛋白質PeMADS6形成異源雙聚體。此外,酵母菌雙雜合系統分析也顯示,PeCYC1在缺少R domain的情形下,失去蛋白質交互作用的能力。在轉基因阿拉伯芥中,過量表現PeCYC1造成植株整體變小,包含葉子,根長,與花瓣及萼片。部分長角果莢在轉基因阿拉伯芥中也萎縮與發育不正常,種子數量也相較野生型的長角果莢少。掃描式電子顯微鏡顯示花瓣與葉片的細胞大小也變小。然而類似結果病沒有在過量表現PeCYC2的阿拉伯芥轉植株中發現,推測該基因可能需要和其他轉錄因子結合蘭花轉錄因子結合才能有功能性的表現。以上這些研究結果可以提供我們對於蝴蝶蘭CYC/ TB1基因調控花型發育有更進一步的了解。
關鍵字: 姬蝴蝶蘭、CYCLOIDEA、TCP基因
The Orchidaceae is one of the most species-rich plant families, which are renowned for their spectacular floral diversity. To maintain bilateral symmetry of flower is important for orchid flower to attract pollinator. Previous studies showed that CYCLOIDEA genes can regulate bilateral symmetry by inhibit cell proliferation. CYC genes belong to TCP family, which involved in the development of cell. In Antirrhium majus, CYC gene plays an role on inhibition of the cell proliferation of dorsal petals and stamens. In Asteraceae and Gesneriaceae, previous study showed that CYC/TB1-like proteins can interact with transcription factors to form homodimer or heterodimer. However, study on CYC-like genes in monocots is few. In this study, we identified three CYC-like genes, named as PeCYC1, PeCYC2 and PeCYC3, from Phalaenopsis equestris. Multiple sequence alignment showed PeCYC proteins contain typical TCP domains and R domain. Phylogenetic analysis showed that PeCYC genes belong to class II TCP genes and are closely related to CYC/TB1 genes of monocots rather than eudicots. The expression patterns showed that expression of PeCYC1 and PeCYC2 are restricted in lateral sepals, labellum and column. However, expression of PeCYC1 and PeCYC2 were ectopically expressed into lip-like petals of peloric mutant. Yeast-two hybrid results showed that PeCYC1 may form homodimer. However, PeCYC1 lost its homodimer formation activity when R-domain was deleted. Furthermore, Both PeCYC1 and PeCYC2 has ability to interact with B-class PI-like PeMADS6 protein. Overexpression of PeCYC1 in Arabidopsis thaliana showed delayed flowering, smaller leaves and flowers and shorter roots compared with those of wild type. Scanning Electron Micrographic results showed that, the cells of leaves and petals of transgenic plants were smaller than those of wild-type. These results will shed light on the roles of CYC/TB1 genes played in floral symmetry of monocot plants.
Reference
Aceto, S. and Gaudio, L. (2011) The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Current genomics 12: 342-356.
Almeida, J., Rocheta, M. and Galego, L. (1997) Genetic control of flower shape in Antirrhinum majus. Development 124: 1387-1392.
Broholm, S.K., Tahtiharju, S., Laitinen, R.A., Albert, V.A., Teeri, T.H. and Elomaa, P. (2008) A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences of the United States of America 105: 9117-9122.
Busch, A. and Zachgo, S. (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences of the United States of America 104: 16714-16719.
Busch, A. and Zachgo, S. (2009) Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. BioEssays : news and reviews in molecular, cellular and developmental biology 31: 1181-1190.
Chang, Y.Y., Chiu, Y.F., Wu, J.W. and Yang, C.H. (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant & cell physiology 50: 1425-1438.
Clark, J.I. and Coen, E.S. (2002) The cycloidea gene can respond to a common dorsoventral prepattern in Antirrhinum. The Plant journal : for cell and molecular biology 30: 639-648.
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology 16: 735-743.
Corley, S.B., Carpenter, R., Copsey, L. and Coen, E. (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America 102: 5068-5073.
Costa, M.M., Fox, S., Hanna, A.I., Baxter, C. and Coen, E. (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132: 5093-5101.
Crepet, W.L., Nixon, K.C. and Gandolfo, M.A. (2004) Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. American journal of botany 91: 1666-1682.
Cronk, Q. and Moller, M. (1997) Genetics of floral symmetry revealed. Trends in ecology & evolution 12: 85-86.
Cubas, P., Lauter, N., Doebley, J. and Coen, E. (1999) The TCP domain: a motif found in proteins regulating plant growth and development. The Plant journal : for cell and molecular biology 18: 215-222.
Darwin, C. (1868) The variation of animals and plants under domestication. O. Judd & company, New York,.
Doebley, J., Stec, A. and Hubbard, L. (1997) The evolution of apical dominance in maize. Nature 386: 485-488.
Endress, P.K. (1998) Antirrhinum and Asteridae--evolutionary changes of floral symmetry. Symposia of the Society for Experimental Biology 51: 133-140.
Galego, L. and Almeida, J. (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes & development 16: 880-891.
Gao, Q., Tao, J.H., Yan, D., Wang, Y.Z. and Li, Z.Y. (2008) Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Development genes and evolution 218: 341-351.
Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic acids research 20: 1425.
Giurfa, M., Dafni, A. and Neal, P.R. (1999) Floral Symmetry and Its Role in Plant-Pollinator Systems. International journal of plant sciences 160: S41-S50.
Gubitz, T., Caldwell, A. and Hudson, A. (2003) Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Molecular biology and evolution 20: 1537-1544.
Guo, S., Xu, Y., Liu, H., Mao, Z., Zhang, C., Ma, Y., et al. (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature communications 4: 1566.
Hardy, C.R., Sloat, L.L. and Faden, R.B. (2009) Floral organogenesis and the developmental basis for pollinator deception in the asiatic dayflower, Commelina communis (Commelinaceae). American journal of botany 96: 1236-1244.
Hileman, L.C., Kramer, E.M. and Baum, D.A. (2003) Differential regulation of symmetry genes and the evolution of floral morphologies. Proceedings of the National Academy of Sciences of the United States of America 100: 12814-12819.
Howarth, D.G. and Donoghue, M.J. (2006) Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences of the United States of America 103: 9101-9106.
Hsu, H.F., Huang, C.H., Chou, L.T. and Yang, C.H. (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant & cell physiology 44: 783-794.
Kosugi, S. and Ohashi, Y. (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant cell 9: 1607-1619.
Kosugi, S. and Ohashi, Y. (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant journal : for cell and molecular biology 30: 337-348.
Kosugi, S., Suzuka, I. and Ohashi, Y. (1995) Two of three promoter elements identified in a rice gene for proliferating cell nuclear antigen are essential for meristematic tissue-specific expression. The Plant journal : for cell and molecular biology 7: 877-886.
Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J. and Coen, E. (1999) Control of organ asymmetry in flowers of Antirrhinum. Cell 99: 367-376.
Luo, D., Carpenter, R., Vincent, C., Copsey, L. and Coen, E. (1996) Origin of floral asymmetry in Antirrhinum. Nature 383: 794-799.
Moller, A.P. (1995) Bumblebee preference for symmetrical flowers. Proceedings of the National Academy of Sciences of the United States of America 92: 2288-2292.
Mondragon-Palomino, M. and Theissen, G. (2008) MADS about the evolution of orchid flowers. Trends in plant science 13: 51-59.
Mondragon-Palomino, M. and Theissen, G. (2011a) Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. The Plant journal : for cell and molecular biology 66: 1008-1019.
Mondragon-Palomino, M. and Trontin, C. (2011b) High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Annals of botany 107: 1533-1544.
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., et al. (2003) Control of leaf morphogenesis by microRNAs. Nature 425: 257-263.
Pan, Z.J., Cheng, C.C., Tsai, W.C., Chung, M.C., Chen, W.H., Hu, J.M., et al. (2011) The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant & cell physiology 52: 1515-1531.
Tahtiharju, S., Rijpkema, A.S., Vetterli, A., Albert, V.A., Teeri, T.H. and Elomaa, P. (2012) Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Molecular biology and evolution 29: 1155-1166.
Tremousaygue, D., Garnier, L., Bardet, C., Dabos, P., Herve, C. and Lescure, B. (2003) Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. The Plant journal : for cell and molecular biology 33: 957-966.
Tsai, W.C. and Chen, H.H. (2006) The orchid MADS-box genes controlling floral morphogenesis. TheScientificWorldJournal 6: 1933-1944.
Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H. and Chen, H.H. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant & cell physiology 45: 831-844.
Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., et al. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant & cell physiology 46: 1125-1139.
Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., et al. (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences of the United States of America 105: 10414-10419.
Xu, S., Luo, Y., Cai, Z., Cao, X., Hu, X., Yang, J., et al. (2013) Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. Journal of integrative plant biology 55: 221-231.
Xu, Y., Teo, L.L., Zhou, J., Kumar, P.P. and Yu, H. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. The Plant journal : for cell and molecular biology 46: 54-68.
Yadav, S.R., Prasad, K. and Vijayraghavan, U. (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Genetics 176: 283-294.
Yang, X., Pang, H.B., Liu, B.L., Qiu, Z.J., Gao, Q., Wei, L., et al. (2012) Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. The Plant cell 24: 1834-1847.
Yuan, Z., Gao, S., Xue, D.W., Luo, D., Li, L.T., Ding, S.Y., et al. (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant physiology 149: 235-244.
Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H. and Theissen, G. (2005) To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. The Journal of heredity 96: 225-240.
Zhou, X.R., Wang, Y.Z., Smith, J.F. and Chen, R. (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). The New phytologist 178: 532-543.