| 研究生: |
鍾力剛 Chung, Li-Gang |
|---|---|
| 論文名稱: |
研製石墨烯複合碳材電極應用於海水及受金屬汙染廢水之電容脫鹽 Capacitive deionization of metal-contaminated water and seawater using graphene/activated carbon composite electrodes |
| 指導教授: |
王鴻博
Wang, H. Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 海水脫鹽 、電容去離子 、石墨烯 、活性碳 、(Cu-Zno)@C 、奈米核殼材料 |
| 外文關鍵詞: | Desalination, capacitive deionization, activated carbon, graphene, (Cu-Zno)@C, core-shell nanoparticles |
| 相關次數: | 點閱:91 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球人口成長以及工業發展,水資源短缺問題逐漸惡化。海水佔地球水資源97%,發展海水淡化技術成為趨勢。電容去離子(capacitive deionization (CDI))是一種低耗能,低汙染的海水淡化技術,透過施加電場於兩電極之間,使電極表面形成電雙層吸附水中帶電荷之離子以達到淡化目的,CDI也可以應用在廢汙水以及受重金屬汙染地下水的淨化處鋰。
CDI效率受電極材料特性影響,例如:導電性、比表面積、親水性等,透過回收廢棕梠殼製成活性碳基材應用於CDI之電極材料,以掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X-光繞射(XRD)、傅立葉轉換紅外光譜(FTIR)、拉曼光譜、比表面積分析儀(BET)、循環伏安、電化學交流阻抗等方法進行特性分析,結果顯示以ZnCl2活化之活性碳可有效去除地下水中砷離子。
透過摻入石墨烯以及奈米Cu@C可提升活性碳電極導電性,增加離子吸附效率。實驗結果顯示研製的活性碳具有高達1160 m2/g的比表面積,製成之電極比電容值最高約為58.172 F/g,電極可透過移除電場或施以反向電壓進行反洗,可達到95%恢復率。本研究結果顯示以活性碳為基材製備的碳電極可有效對地下水、工業廢水以及模擬海水進行淡化,生成淡水。並可以簡易方式達成再生。
Fresh water shortage is a serious problem which is getting worse in recent decades. Desalination technologies is essential because of ocean has 97% of water resources on the earth. Capacitive deionization (CDI) is a promising technology has advantages of low energy consumption and environmental friendly. Ions can be removed from water by applying a potential different between two electrodes. The electrical double layer form on the electrodes surfaces can store the ions. CDI can also used to treat the contaminated underground water and diluted wastewater.
The CDI performance is influenced by the characteristics of electrode materials such as conductivity, specific surface area, and wetting ability. In this study, activated carbon (AC) (recovered from palm shell wastes) was used as CDI electrodes. To promote deionization efficiency, rGO and (Cu-ZnO)@C nanoparticles composite based electrodes were also used for CDI of contaminated underground, waste, and brackish waters (50-5000 mg/L). During repeated CDI, their regeneration abilities were investigated. The carbon electrodes can be regenerated by removing the voltage or reversing the polarity. For the high salinity water, the electrosorption becomes saturation in a short time. Nevertheless, the electrodes regenerated by reversing polarity possess a relatively slow step. The positive electrode surface may involve oxidation during CDI, which can be reduced by reversing the polarity.
Ahmadpour, A., and Do, D.D. (1996), “The preparation of active carbons from coal by chemical and physical activation”. Carbon, 34(4), pp. 471-479.
Al-Karaghouli, A., and Kazmerski, L.L. (2013), “Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes”. Renewable and Sustainable Energy Reviews, 24, pp. 343-356.
Al-Sahali, M., and Ettouney, H. (2007), “Developments in thermal desalination processes: Design, energy, and costing aspects”. Desalination, 214(1–3), pp. 227-240.
Al Aji, B., Yavuz, Y., and Koparal, A.S. (2012), “Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes”. Separation and Purification Technology, 86, pp. 248-254.
Allison, R.P. (2005), “Electrodialysis treatment of surface and waste waters”. Tech. Pap. GE, pp. 1-6.
AlMarzooqi, F.A., Al Ghaferi, A.
A., Saadat, I., and Hilal, N. (2014), “Application of Capacitive Deionisation in water desalination: A review”. Desalination, 342, pp. 3-15.
Alyüz, B., and Veli, S. (2009), “Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins”. Journal of Hazardous Materials, 167(1–3), pp. 482-488.
Anderson, Cudero, A.L., and Palma, J. (2010), “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?”. Electrochimica Acta, 55(12), pp. 3845-3856.
Anderson, R.A. (1997), “Chromium as an Essential Nutrient for Humans”. Regulatory Toxicology and Pharmacology, 26(1), pp. S35-S41.
Awwad, A.M., and Farhan, A.M. (2012), “Equilibrium, Kinetic and Thermodynamics of Biosorption of Lead (II) Copper (II) and Cadmium (II) Ions fromAqueous Solutions ontoOlive Leaves Powder”. American Journal of Chemistry, 2(4), pp. 238-244.
Bahar, R., and Hawlader, M.N.A. (2013), “Desalination: conversion of seawater to freshwater”.
Barnhart, J. (1997), “Occurrences, Uses, and Properties of Chromium”. Regulatory Toxicology and Pharmacology, 26(1), pp. S3-S7.
Beaumont, J.J., Sedman, R.M., Reynolds, S.D., Sherman, C.D., Li, L.-H., Howd, R.A., Alexeeff, G.V. (2008), “Cancer mortality in a Chinese population exposed to hexavaleynt chromium in drinking water”. Epidemiology, 19(1), pp. 12-23.
Belhachem, F., Raël, S., and Davat, B. (2000). A physical based model of power electric double-layer supercapacitors. Paper presented at the Industry Applications Conference, 2000. Conference Record of the 2000 IEEE.
Belkacem, M., Khodir, M., and Abdelkrim, S. (2008), “Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique”. Desalination, 228(1–3), pp. 245-254.
Bennett, A. (2014), “Current challenges in energy recovery for desalination”. Filtration + Separation, 51(5), pp. 22-27.
Bennett, A. (2015), “Innovations and training in desalination”. Filtration + Separation, 52(1), pp. 32-36.
Biesheuvel, P., Van Limpt, B., and Van der Wal, A. (2009), “Dynamic adsorption/desorption process model for capacitive deionization”. The Journal of Physical Chemistry C, 113(14), pp. 5636-5640.
Boening, D.W. (2000), “Ecological effects, transport, and fate of mercury: a general review”. Chemosphere, 40(12), pp. 1335-1351.
Borbély, G., and Nagy, E. (2009), “Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater”. Desalination, 240(1–3), pp. 218-226.
Bouhadana, Y., Avraham, E., Noked, M., Ben-Tzion, M., Soffer, A., and Aurbach, D. (2011), “Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes”. The Journal of Physical Chemistry C, 115(33), pp. 16567-16573.
Cai, P.F., Su, C.J., Chang, W.T., Chang, F.C., Peng, C.Y., Sun, I.W., Wang, H.P. (2014), “Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene”. Marine Pollution Bulletin, 85(2), pp. 733-737.
Caruso, F. (2001), “Nanoengineering of particle surfaces”. Advanced materials, 13(1), pp. 11-22.
Charcosset, C. (2009), “A review of membrane processes and renewable energies for desalination”. Desalination, 245(1–3), pp. 214-231.
Chen, G. (2004), “Electrochemical technologies in wastewater treatment”. Separation and Purification Technology, 38(1), pp. 11-41.
Chen, Q., Zhang, L., and Chen, G. (2011), “Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates”. Analytical chemistry, 84(1), pp. 171-178.
Chiou, H.-Y., Hsueh, Y.-M., Liaw, K.-F., Horng, S.-F., Chiang, M.-H., Pu, Y.-S., Chen, C.-J. (1995), “Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan”. Cancer Research, 55(6), pp. 1296-1300.
Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., and Kalenczuk, R. (2008), “Characterization of carbon nanotubes by Raman spectroscopy”. Mater Sci-Poland, 26(2), pp. 433-441.
Creber, S.A., Vrouwenvelder, J.S., van Loosdrecht, M.C.M., and Johns, M.L. (2010), “Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging”. Journal of Membrane Science, 362(1–2), pp. 202-210.
Da̧browski, A., Hubicki, Z., Podkościelny, P., and Robens, E. (2004), “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method”. Chemosphere, 56(2), pp. 91-106.
Davis, T.A., Volesky, B., and Mucci, A. (2003), “A review of the biochemistry of heavy metal biosorption by brown algae”. Water Research, 37(18), pp. 4311-4330.
De Volder, M.F., Tawfick, S.H., Baughman, R.H., and Hart, A.J. (2013), “Carbon nanotubes: present and future commercial applications”. Science, 339(6119), pp. 535-539.
Dermentzis, K. (2010), “Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization”. Journal of Hazardous Materials, 173(1–3), pp. 647-652.
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R. (2010), “Perspectives on carbon nanotubes and graphene Raman spectroscopy”. Nano Letters, 10(3), pp. 751-758.
El-Dessouky, H.T., and Ettouney, H.M. (2002). Chapter 1 - Introduction. In El-Dessouky & Ettouney (Eds.), Fundamentals of Salt Water Desalination (pp. 1-17). Amsterdam: Elsevier Science B.V.
Engel, R.R., Hopenhayn-Rich, C., Receveur, O., and Smith, A.H. (1994), “Vascular effects of chronic arsenic exposure: a review”. Epidemiologic Reviews, 16(2), pp. 184-209.
Ettouney, H. (2006), “Design of single-effect mechanical vapor compression”. Desalination, 190(1–3), pp. 1-15.
Farmer, J.C., Bahowick, S.M., Harrar, J.E., Fix, D.V., Martinelli, R.E., Vu, A.K., and Carroll, K.L. (1997), “Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water”. Energy & fuels, 11(2), pp. 337-347.
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F. (1996), “Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes”. Journal of The Electrochemical Society, 143(1), pp. 159-169.
Fatah, I.Y.A., Khalil, H., Hossain, M.S., Aziz, A.A., Davoudpour, Y., Dungani, R., and Bhat, A. (2014), “Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials”. Polymers, 6(10), pp. 2611-2624.
Frackowiak, E., and Béguin, F. (2001), “Carbon materials for the electrochemical storage of energy in capacitors”. Carbon, 39(6), pp. 937-950.
Franca, N.D., and Anjos, R.D. (1998), “Source book of alternative technologies for freshwater augmentation in Latin America and the Caribbean”. International Journal of Water Resources Development, 14(3), pp. 365-398.
Fritzmann, C., Löwenberg, J., Wintgens, T., and Melin, T. (2007), “State-of-the-art of reverse osmosis desalination”. Desalination, 216(1–3), pp. 1-76.
Fu, F., and Wang, Q. (2011), “Removal of heavy metal ions from wastewaters: A review”. Journal of Environmental Management, 92(3), pp. 407-418.
Fu, W.-C., Hsieh, Y.-T., Wu, T.-Y., and Sun, I.-W. (2016), “Electrochemical Preparation of Porous Poly (3, 4-ethylenedioxythiophene) Electrodes from Room Temperature Ionic Liquids for Supercapacitors”. Journal of The Electrochemical Society, 163(6), pp. G61-G68.
Gabelich, C.J., Tran, T.D., and Suffet, I.M. (2002), “Electrosorption of inorganic salts from aqueous solution using carbon aerogels”. Environmental Science & Technology, 36(13), pp. 3010-3019.
Gabelich, C.J., Xu, P., and Cohen, Y. (2010). Chapter 10 Concentrate Treatment for Inland Desalting. In Isabel & Andrea (Eds.), Sustainability Science and Engineering (Vol. Volume 2, pp. 295-326): Elsevier.
Gad, H.M.H., and El-Sayed, A.A. (2009), “Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution”. Journal of Hazardous Materials, 168(2–3), pp. 1070-1081.
García-Rodríguez, L. (2002), “Seawater desalination driven by renewable energies: a review”. Desalination, 143(2), pp. 103-113.
Geim, A.K., and Novoselov, K.S. (2007), “The rise of graphene”. Nature materials, 6(3), pp. 183-191.
Grahame, D.C. (1947), “The electrical double layer and the theory of electrocapillarity”. Chemical reviews, 41(3), pp. 441-501.
Gu, Y., Wu, H., Xiong, Z., Al Abdulla, W., and Zhao, X. (2014), “The electrocapacitive properties of hierarchical porous reduced graphene oxide templated by hydrophobic CaCO 3 spheres”. Journal of Materials Chemistry A, 2(2), pp. 451-459.
Guo, H., Wen, D., Liu, Z., Jia, Y., and Guo, Q. (2014), “A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes”. Applied Geochemistry, 41, pp. 196-217.
Guo, J., Gui, B., Xiang, S.-x., Bao, X.-t., Zhang, H.-j., and Lua, A.C. (2008), “Preparation of activated carbons by utilizing solid wastes from palm oil processing mills”. Journal of Porous Materials, 15(5), pp. 535-540.
Guo, S., and Dong, S. (2011), “Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications”. Chemical Society Reviews, 40(5), pp. 2644-2672.
Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A., and Agarwal, S. (2012), “Chemical treatment technologies for waste-water recycling—an overview”. Rsc Advances, 2(16), pp. 6380-6388.
Herkovits, J., and Alejandra Helguero, L. (1998), “Copper toxicity and copper–zinc interactions in amphibian embryos”. Science of The Total Environment, 221(1), pp. 1-10.
Hong, C.-I., Kang, H.-Y., Wang, H.P., Lin, W.-K., Jeng, U.S., and Su, C.-H. (2011), “Cu–ZnO@C nanoreactors studied by in situ synchrotron SAXS spectroscopy”. Journal of Electron Spectroscopy and Related Phenomena, 184(3–6), pp. 301-303.
Hoover, N.N., Auten, B.J., and Chandler, B.D. (2006), “Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles”. The Journal of Physical Chemistry B, 110(17), pp. 8606-8612.
Hu, H., Wang, X., Liu, F., Wang, J., and Xu, C. (2011), “Rapid microwave-assisted synthesis of graphene nanosheets–zinc sulfide nanocomposites: Optical and photocatalytic properties”. Synthetic Metals, 161(5–6), pp. 404-410.
Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Fan, C. (2010), “Graphene-based antibacterial paper”. Acs Nano, 4(7), pp. 4317-4323.
Huang, W., Zhang, Y., Bao, S., and Song, S. (2013), “Desalination by capacitive deionization with carbon-based materials as electrode: a review”. Surface Review and Letters, 20(06), pp. 1330003.
Iijima, S. (1991), “Helical microtubules of graphitic carbon”. Nature, 354(6348), pp. 56-58.
Inglezakis, V.J., Zorpas, A.A., Loizidou, M.D., and Grigoropoulou, H.P. (2005), “The effect of competitive cations and anions on ion exchange of heavy metals”. Separation and Purification Technology, 46(3), pp. 202-207.
Jang, C.-S., Liu, C.-W., Lin, K.-H., Huang, F.-M., and Wang, S.-W. (2006), “Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas”. Environmental Science & Technology, 40(5), pp. 1707-1713.
Johnson, A.M., and VENOLIA, W. (1970), “The electrosorb process for desalting water”.
Jones, C.D., and Lyon, L.A. (2003), “Shell-restricted swelling and core compression in poly (N-isopropylacrylamide) core-shell microgels”. Macromolecules, 36(6), pp. 1988-1993.
Jung, H.-H., Hwang, S.-W., Hyun, S.-H., Lee, K.-H., and Kim, G.-T. (2007), “Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying”. Desalination, 216(1–3), pp. 377-385.
Kang, G.-d., and Cao, Y.-m. (2012), “Development of antifouling reverse osmosis membranes for water treatment: A review”. Water Research, 46(3), pp. 584-600.
Kang, S.-Y., Lee, J.-U., Moon, S.-H., and Kim, K.-W. (2004), “Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater”. Chemosphere, 56(2), pp. 141-147.
Khare, R., and Bose, S. (2005), “Carbon nanotube based composites-a review”. Journal of Minerals & Materials Characterization & Engineering, 4(1), pp. 31-46.
Khawaji, A.D., Kutubkhanah, I.K., and Wie, J.-M. (2008), “Advances in seawater desalination technologies”. Desalination, 221(1–3), pp. 47-69.
Kumar, M., and Puri, A. (2012), “A review of permissible limits of drinking water”. Indian journal of occupational and environmental medicine, 16(1), pp. 40.
Laxman, K., Myint, M.T.Z., Al Abri, M., Sathe, P., Dobretsov, S., and Dutta, J. (2015), “Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes”. Desalination, 362, pp. 126-132.
Lee, J.-B., Park, K.-K., Yoon, S.-W., Park, P.-Y., Park, K.-I., and Lee, C.-W. (2009), “Desalination performance of a carbon-based composite electrode”. Desalination, 237(1–3), pp. 155-161.
Lee, K.P., Arnot, T.C., and Mattia, D. (2011), “A review of reverse osmosis membrane materials for desalination—Development to date and future potential”. Journal of Membrane Science, 370(1–2), pp. 1-22.
Li, H., Zou, L., Pan, L., and Sun, Z. (2010), “Novel Graphene-Like Electrodes for Capacitive Deionization”. Environmental Science & Technology, 44(22), pp. 8692-8697.
Li, X., Poon, C.-s., and Liu, P.S. (2001), “Heavy metal contamination of urban soils and street dusts in Hong Kong”. Applied Geochemistry, 16(11), pp. 1361-1368.
Mandal, B.K., and Suzuki, K.T. (2002), “Arsenic round the world: a review”. Talanta, 58(1), pp. 201-235.
Marques, P., Sousa, A., Gonçalves, G., Grácio, J., Singh, M., Almeida, N., and Cruz, S. (2011). Functionalized graphene nanocomposites: INTECH Open Access Publisher.
Mathioulakis, E., Belessiotis, V., and Delyannis, E. (2007), “Desalination by using alternative energy: Review and state-of-the-art”. Desalination, 203(1–3), pp. 346-365.
Matlock, M.M., Henke, K.R., and Atwood, D.A. (2002), “Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs”. Journal of Hazardous Materials, 92(2), pp. 129-142.
Matlock, M.M., Howerton, B.S., and Atwood, D.A. (2002), “Chemical precipitation of heavy metals from acid mine drainage”. Water Research, 36(19), pp. 4757-4764.
Mohan, D., and Pittman Jr, C.U. (2007), “Arsenic removal from water/wastewater using adsorbents—A critical review”. Journal of Hazardous Materials, 142(1–2), pp. 1-53.
Mohanty, K., Jha, M., Meikap, B.C., and Biswas, M.N. (2005), “Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride”. Chemical Engineering Science, 60(11), pp. 3049-3059.
Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., and Ranđelović, M. (2011), “Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon”. Desalination, 276(1–3), pp. 53-59.
Monshi, A., Foroughi, M.R., and Monshi, M.R. (2012), “Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD”. World Journal of Nano Science and Engineering, 2(03), pp. 154.
Mossad, M., Zhang, W., and Zou, L. (2013), “Using capacitive deionisation for inland brackish groundwater desalination in a remote location”. Desalination, 308, pp. 154-160.
Murphy, G.W., and Caudle, D.D. (1967), “Mathematical theory of electrochemical demineralization in flowing systems”. Electrochimica Acta, 12(12), pp. 1655-1664.
Myint, M.T.Z., and Dutta, J. (2012), “Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach”. Desalination, 305, pp. 24-30.
Needleman, H. (2004), “Lead poisoning”. Annu. Rev. Med., 55, pp. 209-222.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P., and Rahmann, M. (1998), “Arsenic poisoning of Bangladesh groundwater”. Nature, 395(6700), pp. 338-338.
Nikitin, A., and Gogotsi, Y. (2004), “Nanostructured carbide-derived carbon”. Encyclopedia of nanoscience and nanotechnology, 7, pp. 553-574.
Novoselov, K. (2011), “Nobel lecture: Graphene: Materials in the flatland”. Reviews of Modern Physics, 83(3), pp. 837.
Novoselov, K.S., Fal, V., Colombo, L., Gellert, P., Schwab, M., and Kim, K. (2012), “A roadmap for graphene”. Nature, 490(7419), pp. 192-200.
Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.a., Firsov, A. (2004), “Electric field effect in atomically thin carbon films”. Science, 306(5696), pp. 666-669.
Obreja, V.V.N. (2008), “On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review”. Physica E: Low-dimensional Systems and Nanostructures, 40(7), pp. 2596-2605.
Oldham, K.B. (2008), “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface”. Journal of Electroanalytical Chemistry, 613(2), pp. 131-138.
Oren, Y. (2008), “Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review)”. Desalination, 228(1–3), pp. 10-29.
Oren, Y., and Soffer, A. (1985), “The electrical double layer of carbon and graphite electrodes”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 186(1), pp. 63-77.
Oren, Y., and Soffer, A. (1986), “The electrical double layer of carbon and graphite electrodes: Part III. Charge and dimensional changes at wide potential range”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 206(1–2), pp. 101-114.
Oren, Y., Tobias, H., and Soffer, A. (1984), “The electrical doublelayer of carbon and graphite electrodes: Part I. Dependence on electrolyte type and concentration”. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 162(1–2), pp. 87-99.
Palaniappan, K., Xue, C., Arumugam, G., Hackney, S.A., and Liu, J. (2006), “Water-soluble, cyclodextrin-modified CdSe-CdS core-shell structured quantum dots”. Chemistry of materials, 18(5), pp. 1275-1280.
Palenzuela, P., Hassan, A.S., Zaragoza, G., and Alarcón-Padilla, D.-C. (2014), “Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant”. Desalination, 337, pp. 31-42.
Pande, S., Ghosh, S.K., Praharaj, S., Panigrahi, S., Basu, S., Jana, S., Pal, T. (2007), “Synthesis of normal and inverted gold-silver core-shell architectures in β-Cyclodextrin and their applications in SERS”. The Journal of Physical Chemistry C, 111(29), pp. 10806-10813.
Peng, Z., Zhang, D., Shi, L., and Yan, T. (2012), “High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization”. Journal of Materials Chemistry, 22(14), pp. 6603-6612.
Pilat, B. (2001), “Practice of water desalination by electrodialysis”. Desalination, 139(1), pp. 385-392.
Porada, S., Zhao, R., van der Wal, A., Presser, V., and Biesheuvel, P.M. (2013), “Review on the science and technology of water desalination by capacitive deionization”. Progress in Materials Science, 58(8), pp. 1388-1442.
Quan, C.-Y., Chen, J.-X., Wang, H.-Y., Li, C., Chang, C., Zhang, X.-Z., and Zhuo, R.-X. (2010), “Core− shell nanosized assemblies mediated by the α− β cyclodextrin dimer with a tumor-triggered targeting property”. Acs Nano, 4(7), pp. 4211-4219.
Raluy, G., Serra, L., and Uche, J. (2006), “Life cycle assessment of MSF, MED and RO desalination technologies”. Energy, 31(13), pp. 2361-2372.
Renschler, C.L., Pouch, J.J., and Cox, D.M. (1992). Novel Forms of Carbon: Symposium Held April 27-May 1, 1992, San Francisco, California, USA: Materials Research Society.
Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., and Johnson, C.A. (2013), “Groundwater arsenic contamination throughout China”. Science, 341(6148), pp. 866-868.
Schärtl, W. (2010), “Current directions in core–shell nanoparticle design”. Nanoscale, 2(6), pp. 829-843.
Semiat, R. (2008), “Energy issues in desalination processes”. Environmental Science & Technology, 42(22), pp. 8193-8201.
Sharma, P., and Dubey, R.S. (2005), “Lead toxicity in plants”. Brazilian journal of plant physiology, 17(1), pp. 35-52.
Shen, X., Jiang, L., Ji, Z., Wu, J., Zhou, H., and Zhu, G. (2011), “Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant”. Journal of Colloid and Interface Science, 354(2), pp. 493-497.
Shrivastava, H.Y., Ravikumar, T., Shanmugasundaram, N., Babu, M., and Unni Nair, B. (2005), “Cytotoxicity studies of chromium(III) complexes on human dermal fibroblasts”. Free Radical Biology and Medicine, 38(1), pp. 58-69.
Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Wrzalik, R. (2013), “Adsorption of divalent metal ions from aqueous solutions using graphene oxide”. Dalton Transactions, 42(16), pp. 5682-5689.
Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Smith, M.T. (1992), “Cancer risks from arsenic in drinking water”. Environmental health perspectives, 97, pp. 259.
Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010), “Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties”. Progress in Polymer Science, 35(3), pp. 357-401.
Stern, B.R. (2010), “Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations”. Journal of Toxicology and Environmental Health, Part A, 73(2-3), pp. 114-127.
Subramani, A., and Hoek, E.M.V. (2010), “Biofilm formation, cleaning, re-formation on polyamide composite membranes”. Desalination, 257(1–3), pp. 73-79.
Sud, D., Mahajan, G., and Kaur, M.P. (2008), “Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review”. Bioresource Technology, 99(14), pp. 6017-6027.
Tan, I.A.W., Ahmad, A.L., and Hameed, B.H. (2008), “Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies”. Journal of Hazardous Materials, 154(1–3), pp. 337-346.
Tofighy, M.A., and Mohammadi, T. (2011), “Adsorption of divalent heavy metal ions from water using carbon nanotube sheets”. Journal of Hazardous Materials, 185(1), pp. 140-147.
Tseng, C.-H. (2002), “An overview on peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan”. Angiology, 53(5), pp. 529-537.
Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., and Dai, S. (2011), “Mesoporous carbon for capacitive deionization of saline water”. Environmental Science & Technology, 45(23), pp. 10243-10249.
Van der Bruggen, B., and Vandecasteele, C. (2002), “Distillation vs. membrane filtration: overview of process evolutions in seawater desalination”. Desalination, 143(3), pp. 207-218.
Wang, H., Shi, L., Yan, T., Zhang, J., Zhong, Q., and Zhang, D. (2014), “Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization”. Journal of Materials Chemistry A, 2(13), pp. 4739-4750.
Wang, J., and Chen, C. (2009), “Biosorbents for heavy metals removal and their future”. Biotechnology Advances, 27(2), pp. 195-226.
Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wu, D. (2011), “Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes”. Journal of Materials Chemistry, 21(45), pp. 18295-18299.
Wang, M., Huang, C., Cao, Y., Yu, Q., Deng, Z., Liu, Y., Guo, W. (2009), “Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays”. Journal of Physics D: Applied Physics, 42(15), pp. 155104.
Wang, T., Tan, S., and Liang, C. (2009), “Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation”. Carbon, 47(7), pp. 1880-1883.
Welgemoed, T.J., and Schutte, C.F. (2005), “Capacitive Deionization Technology™: An alternative desalination solution”. Desalination, 183(1–3), pp. 327-340.
Wen, X., Zhang, D., Yan, T., Zhang, J., and Shi, L. (2013), “Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization”. Journal of Materials Chemistry A, 1(39), pp. 12334-12344.
Wimalasiri, Y., and Zou, L. (2013), “Carbon nanotube/graphene composite for enhanced capacitive deionization performance”. Carbon, 59, pp. 464-471.
Xing, W., Qiao, S.Z., Ding, R.G., Li, F., Lu, G.Q., Yan, Z.F., and Cheng, H.M. (2006), “Superior electric double layer capacitors using ordered mesoporous carbons”. Carbon, 44(2), pp. 216-224.
Xu, P., Drewes, J.E., Heil, D., and Wang, G. (2008), “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology”. Water Research, 42(10–11), pp. 2605-2617.
Xue, D.-J., Xin, S., Yan, Y., Jiang, K.-C., Yin, Y.-X., Guo, Y.-G., and Wan, L.-J. (2012), “Improving the electrode performance of Ge through Ge@ C core–shell nanoparticles and graphene networks”. Journal of the American Chemical Society, 134(5), pp. 2512-2515.
Yang, C.-M., Choi, W.-H., Na, B.-K., Cho, B.W., and Cho, W.I. (2005), “Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes”. Desalination, 174(2), pp. 125-133.
Yang, C., Liu, Y., Ma, C., Norton, M., and Qiao, J. (2015), “Preparing Desirable Activated Carbons from Agricultural Residues for Potential Uses in Water Treatment”. Waste and Biomass Valorization, 6(6), pp. 1029-1036.
Yang, J., Zou, L., Song, H., and Hao, Z. (2011), “Development of novel MnO 2/nanoporous carbon composite electrodes in capacitive deionization technology”. Desalination, 276(1), pp. 199-206.
Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., and Duan, X. (2010), “Preparation of high surface area activated carbon from coconut shells using microwave heating”. Bioresource Technology, 101(15), pp. 6163-6169.
Yang, Z.Y., Jin, L.J., Lu, G.Q., Xiao, Q.Q., Zhang, Y.X., Jing, L., Sun, K.N. (2014), “Sponge‐templated preparation of high surface area graphene with ultrahigh capacitive deionization performance”. Advanced Functional Materials, 24(25), pp. 3917-3925.
Yin, H., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., Tang, Z. (2013), “Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water”. Advanced materials, 25(43), pp. 6270-6276.
Zahir, F., Rizwi, S.J., Haq, S.K., and Khan, R.H. (2005), “Low dose mercury toxicity and human health”. Environmental Toxicology and Pharmacology, 20(2), pp. 351-360.
Zhang, D., Wen, X., Shi, L., Yan, T., and Zhang, J. (2012), “Enhanced capacitive deionization of graphene/mesoporous carbon composites”. Nanoscale, 4(17), pp. 5440-5446.
Zhang, J., and Ma, P.X. (2013), “Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective”. Advanced Drug Delivery Reviews, 65(9), pp. 1215-1233.
Zhang, L., and Wong, M.H. (2007), “Environmental mercury contamination in China: Sources and impacts”. Environment International, 33(1), pp. 108-121.
Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M. (2013), “Preparation and characterization of a novel magnetic biochar for arsenic removal”. Bioresource Technology, 130, pp. 457-462.
Zhao, R., Biesheuvel, P., and Van der Wal, A. (2012), “Energy consumption and constant current operation in membrane capacitive deionization”. Energy & Environmental Science, 5(11), pp. 9520-9527.
Zhou, Y., Yang, J., Cheng, X., Zhao, N., Sun, L., Sun, H., and Li, D. (2012), “Electrostatic self-assembly of graphene–silver multilayer films and their transmittance and electronic conductivity”. Carbon, 50(12), pp. 4343-4350.
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S. (2010), “Graphene and graphene oxide: synthesis, properties, and applications”. Advanced materials, 22(35), pp. 3906-3924.
Zou, L., Li, L., Song, H., and Morris, G. (2008), “Using mesoporous carbon electrodes for brackish water desalination”. Water Research, 42(8-9), pp. 2340-2348.
Zularisam, A.W., Ismail, A.F., and Salim, R. (2006), “Behaviours of natural organic matter in membrane filtration for surface water treatment — a review”. Desalination, 194(1–3), pp. 211-231.