簡易檢索 / 詳目顯示

研究生: 郭昱均
Quay, Yee Jun
論文名稱: 硫化物固態電解質合成及運用於鋰硫電池之研究
Synthesis of Sulfide Solid Electrolytes and Application in Lithium-sulfur Batteries
指導教授: 鍾昇恆
Chung, Sheng-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 98
中文關鍵詞: 硫化物固態電解質高能球磨法鹵素鋰鹽鋰硫電池
外文關鍵詞: sulfide solid electrolyte, high-energy ball mill, lithium halides, lithium sulfur batteries
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統儲能系統如鋰離子電池,由於其使用易燃、易揮發、易爆炸的有機電解液,在國內外已發生多起熱失控事件,存在其安全隱患的問題,並且能量密度基本已達到近理論上限。鋰硫電池因鋰陽極和硫陰極可提供3860 mA∙h g-1和1672 mA∙h g-1 的高理論電容,以及綠色環保和低成本,是下一代儲能設備的理想候選材料。然而,鋰硫電池面臨緩慢的反應動力學、低硫負載量在變化/放電過程中基於材料本身的相變,多硫化物會在陽極和陰極之間產生擴散,因而導致庫侖效率降低和鋰金屬表面導致電池失效。
    在此,我們將Li2S-P2S5利用高能球磨法來合成硫化物固體電解質,並使用多硫化物作為鋰硫電池的陰極,以抑制鋰金屬的生長來提高電池的安全性;同時引入材料厚度之問題探討,期許在材料使用之餘可以達到商用的目的。本作品使用硫化物固態電解質替代可燃液態電解質且在室溫狀態下進行運作,並結合鋰硫電池的高比電容量,大幅提升了安全性。
    此外本研究亦嘗試透過材料的設計與合成來解決固態電池之挑戰。我們在上述二元體系外添加了鹵素鋰鹽進行硫銀鍺礦型固態電解質合成出Li6PS5X,以簡易的方法製造出非晶形態的固態電解質。與二元體系相比,鹵素鋰鹽的摻雜(即X=F、Cl、Br、I)不僅增加了離子導電率,也增强了與Li金屬界面的穩定性。如摻雜F的固態電解質在循環的過程中產生含有LiF的SEI層,有助於增强界面的穩定性,以實現電池在循環過程中保持穩定的性能,並維持電量保有率。

    Conventional energy storage systems, such as lithium-ion batteries, have suffered many thermal runaway incidents at home and abroad due to the use of organic electrolytes that are flammable, volatile, and explosive, and their energy density has basically reached its theoretical upper limit. Lithium-sulfur batteries as a promising candidate for next-generation energy storage devices because the lithium anode and sulfur cathode can provide high theoretical capacitance of 3860 mA∙h g-1 and 1672 mA∙h g-1 respectively, and they are also environmentally friendly and low-cost. However, lithium-sulfur batteries face slow reactive kinetics, low sulfur loading due to the material's own phase transition during the charge/discharge process, and polysulfide diffusion between the anode and cathode, which leads to a reduction in Coulombic efficiency and battery failure due to lithium metal surfaces. Here, we synthesize a binary system of Li2S-P2S5 using high-energy ball milling to synthesize sulfide solid electrolytes, and use polysulfides as the cathode of lithium-sulfur batteries to inhibit the growth of lithium metal to improve the safety of the batteries. This work uses sulfide solid electrolyte to replace the combustible liquid electrolyte and operates at room temperature, and combines the high specific electric capacity of lithium-sulfur batteries to greatly improve safety. In addition, this study also attempts to solve the challenge of solid-state batteries through material design and synthesis. Li6PS5X was synthesized by adding lithium halide to the above binary system to produce an amorphous solid-state electrolyte in a simple way. Compared with the binary system, the doping of lithium halides (i.e., X=F, Cl, Br, I) not only increases the ionic conductivity but also enhances the stability of the interface with Li metal. For example, the F-doped solid electrolyte produces a LiF-containing SEI layer during the cycling process, which helps to enhance the stability of the interface, thus realizing the stable performance of the battery during the cycling process and maintaining the power retention rate.

    摘要 i Extended Abstract ii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第壹章、 緒論 1 1.1. 鋰硫電池概述 1 1.2. 鋰硫電池工作原理 3 1.3. 硫陰極 4 1.4. 鋰陽 5 第貳章、 文獻回顧 6 2.1. 固態電解質 6 2.1.1. 高分子膠固態電解質 8 2.1.2. 氧化物固態電解質 9 2.1.3. 鹵化物固態電解質 9 2.2. 硫化物固態電解質 10 2.2.1. 硫化物固態電解質 10 2.2.2. Li2S-P2S5玻璃及玻璃陶瓷 11 2.2.3. 陰離子摻雜Li2S-P2S5 11 2.2.4. Thio-LISICON 12 2.3. 固態電解質製程方法 13 第參章、 實驗設計 15 3.1. 製備多硫化物陰極液 15 3.1.1. 電解液 15 3.1.2. 多硫化物陰極液 15 3.1.3. 鹵化鋰鹽電解液 15 3.1.4. 硫銀鍺礦陰極液 15 3.2. 製備固態電解質 16 3.2.1. 硫化鋰-硫化磷固態電解質粉末與球磨製程 16 3.2.2. 硫銀鍺礦固態電解質粉末與球磨製程 16 3.2.3. 製備錠狀硫化物固態電解質 16 3.3. 電池組裝結構 17 3.3.1. 製備硫化鋰-硫化磷固態電解質電池 17 3.3.2. 製備硫銀鍺礦固態電解質電池 17 3.3.3. 製備鹵化鋰鹽電解液電池 17 3.3.4. 製備硫銀鍺礦陰極電池 17 3.3.5. 對稱電池之製作 17 3.3.6. 非對稱電池之製作 17 3.4. 實驗分析儀器 18 3.4.1. 掃描式電子顯微鏡與能量散射X射線光譜 18 3.4.2. 粉末X光二維繞射儀 19 3.4.3. 微拉曼及微光激發光譜儀 19 3.4.4. 化學分析電子光譜儀 20 3.4.5. 電池循環測試機 20 3.4.6. 電化學阻抗分析儀 20 3.4.7. 恆電位/恆電流儀 21 第肆章、 結果與討論 22 4.1. 硫化鋰-硫化磷固態電解質 22 4.1.1. 物理性質與化學性質之分析 22 4.1.2. 電性與電化學分析 24 4.1.3. 鋰鋰對稱電池之循環行為 28 4.2. 硫銀鍺礦固態電解質 30 4.2.1. 材料分析 30 4.2.2. 電性與電化學分析 32 4.2.3. 固態電解質陰極與鹵化鋰鹽之貢獻 41 4.2.4. 化學分析電子光譜儀器之探討 44 4.2.5. 電池之循環性能 52 第伍章、 本研究之創新性、學術性、與應用性 63 第陸章、 結論 64 6.1. 硫化鋰-硫化磷固態電解質 64 6.2. 硫銀鍺礦固態電解質 65 第柒章、 參考文獻 66

    [1] S.-H. Chung, C.-H. Chang, and A. Manthiram, “Progress on the critical parameters for lithium–sulfur batteries to be practically viable,” Advanced Functional Materials, 28(28), 1801188, 2018.
    [2] J. Lei, T. Liu, J. J. Chen, M. S. Zheng, Q. Zhang, B. W. Mao and Q. F. Dong, “Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries,” Chem, 6, 2533–2557, 2020.
    [3] Y.-T. Liu, S. Liu, G.-R. Li, X.-P. Gao, “Strategy of enhancing the volumetric energy density for lithium–sulfur batteries,” Advanced Materials, 33(8), 2003955, 2021.
    [4] W. Q. Yao, K. Liao, T. X. Lai, H. Sul and A. Manthiram, “Rechargeable metal-sulfur batteries: key materials to mechanisms,” Chemical Reviews, 124(8), 4935-5118, 2024.
    [5] M. Barghamadi, A. Kapoor, and C. Wen, “A review on Li-S batteries as a high efficiency rechargeable lithium battery,” Journal of the Electrochemical Society, 160(8), A1256, 2013.
    [6] H. L. Ye, and Y. G. Li, “Room‐temperature metal–sulfur batteries: What can we learn from lithium–sulfur?,” InfoMat, 4(5), e12291, 2022.
    [7] R. Steudel, and T. Chivers, “The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries,” Chemical Society Reviews, 48(12), 3279-3319, 2019.
    [8] S. Drvarič Talian, G. Kapun, J. Moškon, A. Vizintin, A. Randon-Vitanova, R. Dominko, M. Gaberšček, “Which process limits the operation of a Li–S system?,” Chem. Mater., 31, 9012–9023, 2019.
    [9] M. Wild, L. O'neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, and G. J. Offer, “Lithium sulfur batteries, a mechanistic review,” Energy & Environmental Science, 8(12), 3477-3494, 2015.
    [10] S. Feng, Z. H. Fu, X. Chen, and Q. Zhang, “A review on theoretical models for lithium–sulfur battery cathodes,” InfoMat, 4(3), e12304, 2022.
    [11] M. Zhao, H. J. Peng, B. Q. Li, and J. Q. Huang, “Kinetic promoters for sulfur cathodes in lithium–sulfur batteries,” Accounts of Chemical Research, 57(4), 545-557, 2024.
    [12] L. Jiao, H. Li, C. Zhang, H. Jiang, S. Yang, D. K. Shu, C. Y. Li, B. W. Cheng, Q. H. Yang and W. J. Zhang, “Molecular engineering of sulfur‐providing materials for optimized sulfur conversion in Li‐S chemistry,” EcoMat, 4(6), e12262,2022.
    [13] R. C. Wang, C. Luo, T. S. Wang, G. M. Zhou, Y. Q. Deng, Y. B. He, Q. F. Zhang, F. Y, Kang, W. Lv and Q. H. Yang, “Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries,” Advanced Materials, 32(32), 2000315, 2020.
    [14] M. A. Weret, W.-Ni. Su, B. J. Hwang, “Strategies towards High Performance Lithium-Sulfur Batteries,” Batter. Supercaps, 5(8), e202200059, 2022.
    [15] J. L. Guo, H. Y. Pei, Y. Dou, S. Y. Zhao, G. S. Shao, J. P. Liu, “Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio,” Advanced Functional Materials., 2010499, 2021.
    [16] M. Wang, Z. Bai, T. Yang, C. Nie, X. Xu, Y. Wang, J. Yang, S. Dou, N. Wang, “Advances in high sulfur loading cathodes for practical lithium‐sulfur batteries,” Advanced Energy Materials, 12(39), 2201585, 2022.
    [17] X. L. Ji, K. T. Lee, and L. F. Nazar, “A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries,” Nature material, 8(6), 500-506 s, 2009.
    [18] S.-H. Chung and A. Manthiram, “Designing lithium-sulfur cells with practically necessary parameters,” Joule, 2(4), 710-724, 2018.
    [19] C. C. Wu, T. C. Chan and S. H. Chung, “Progress on critical cell fabrication parameters and designs for advanced lithium–sulfur batteries,” Chemical Communications, 60(79), 11017-11033, 2024.
    [20] L. Qie, C. X Zu and A. Manthiram, “A High Energy Lithium-Sulfur Battery with Ultrahigh-Loading Lithium Polysulfide Cathode and its Failure Mechanism,” Advanced Energy Materials, 6(7), 1502459, 2016.
    [21] Z. Y. Pan, D. J. L. Brett, G. J. He and I. P. Parkin, “Progress and perspectives of organosulfur for lithium–sulfur batteries,” Advanced Energy Materials, 12(8), 2103483,2022.
    [22] L. Wang, W. X. Hua, X. Wan, Z. Feng, Z. H. Hu, H. Li, J. T. Niu, L. X. Wang, A. S. Wang, J. Y. Liu, X. Y. Lang, G. Wang, W. F. Li, Q. H. Yang and W. C. Wang, “Design rules of a sulfur redox electrocatalyst for lithium–sulfur batteries,” Advanced Materials, 34(14), 2110279, 2022.
    [23] J. H. Chen, H. M. Zhang, H. J. Yang, J. Y. Lei, A. Naveed, J. Yang, Y. Nuli, J. L. Wang, “Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte,” Energy Storage Mater., 27, 307–315, 2020.
    [24] C. H. Yu, Y. J. Yen and S. H. Chung, “Nanoporosity of carbon–sulfur nanocomposites toward the lithium–sulfur battery electrochemistry,” Nanomaterials, 11(6), 1518, 2021.
    [25] X. Li, Li. X. Yuan, D. Z. Liu, J. W. Xiang, Z. Li, and Y. H. Huang, “Solid/quasi‐solid phase conversion of sulfur in lithium–sulfur battery,” Small, 18(43), 2106970, 2022.
    [26] S. Nanda, A. Gupta and A. Manthiram, “Anode‐free full cells: a pathway to high‐energy density lithium‐metal batteries,” Advanced Energy Materials, 11(2), 2000804, 2021.
    [27] X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Y. Li and Q. Zhang, “The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?,” Advanced Energy Materials, 10(10), 1903645, 2020.
    [28] Z. X. Wang, F. L. Qi, L. C. Yin, Y. Shi, C. G. Sun, B. G. An, H.-M. Cheng and F. Li, “An anion‐tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes,” Advanced Energy Materials, 10(14), 1903843, 2020.
    [29] G. M. Zhou, F. Li and H. M. Cheng, “Progress in flexible lithium batteries and future prospects,” Energy & Environmental Science, 7(4), 1307-1338, 2014.
    [30] X. Q. Zhang, X. B. Cheng, and Q. Zhang, “Advances in interfaces between Li metal anode and electrolyte,” Advanced Materials Interfaces, 5(2), 1701097, 2018.
    [31] J. Janek and W. G. Zeier, “A solid future for battery development,” Nature energy, 1(9), 1-4, 2016.
    [32] X. W. Yu, and A. Manthiram, “A review of composite polymer-ceramic electrolytes for lithium batteries,” Energy Storage Materials, 34, 282-300, 2021.
    [33] L. N. Jia, J. H. Zhu, X. Zhang, B. J. Guo, Y. B. Du, and X. D. Zhuang, “Li–solid electrolyte interfaces/interphases in all-solid-state Li batteries,” Electrochemical Energy Reviews, 7(1), 12, 2024.
    [34] A. Manthiram, X. W. Yu and S. F. Wang, “Lithium battery chemistries enabled by solid-state electrolytes,” Nature Reviews Materials, 2(4), 1-16, 2017.
    [35] A. Gurung, J. Pokharel, A. Baniya, R. Pathak, K. Chen, B. S. Lamsal, W.-H. Zhang, Y. Zhou and Q. Q. Qiao, “A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries,” Sustainable Energy & Fuels, 3(12), 3279-3309, 2019.
    [36] M. B. Armand, J. M. Chabagno, and M. J. Duclot, “Fast ion transport in solids,” Electrodes and Electrolytes, 131, 2944-2955, 1979.
    [37] S. Randau, D. A.Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffee, T. Adermann, J. Kulisch, W. G. Zeier, F. L. Richter and J. Janek, “Benchmarking the performance of all-solid-state lithium batteries” Nature Energy, 5(3), 259-270, 2020.
    [38] L. Chen, Y. T. Li, S. P. Li, L. Z. Fan, C. W. Nan, and J. B. Goodenough, “PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”,” Nano Energy, 46, 176-184, 2018.
    [39] S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He and Q. H. Yang, “Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries,” Advanced Science, 7(5), 1903088, 2020.
    [40] S. J. Xu, Z. H, Sun, C. G. Sun, F. Li, K. Chen, Z. H, Zhang, and F. Li, “Homogeneous and fast ion conduction of PEO‐based solid‐state electrolyte at low temperature,” Advanced Functional Materials, 30(51), 2007172, 2020.
    [41] M. Zhu, J. X. Wu Y. Wang, M. M. Song, L. Long, S. H. Siyal, X. P. Yang and G. Sui, “Recent advances in gel polymer electrolyte for high-performance lithium batteries,” Journal of energy chemistry, 37, 126-142, 2019.
    [42] R. Murugan, V. Thangadurai, and W. Weppner, “Fast lithium ion conduction in garnet-type Li7La3Zr2O12,” Angewandte Chemie, 46(41), 7778, 2007.
    [43] C. K. Chan, T. Yang, and J. M. Weller, “Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries,” Electrochimica Acta, 253, 268-280, 2017.
    [44] N. Hoinkis, J. Schuhmacher, S. Leukel, C. Loho, A. Roters, F. H. Richter, and J. Janek, “Particle size-dependent degradation kinetics of garnet-type Li6.5La3Zr1.5Ta0.5O12 solid electrolyte powders in ambient air,” The Journal of Physical Chemistry C, 127(17), 8320-8331, 2023.
    [45] J. Brous, I. Fankuchen, and E. Banks, “Rare earth titanates with a perovskite structure,” Acta crystallographica, 6(1), 67-70, 1953.
    [46] O. Bohnke, “The fast lithium-ion conducting oxides Li3xLa2/3− xTiO3 from fundamentals to application,” Solid State Ionics, 179(1-6), 9-15, 2008.
    [47] Y. Wang, Y. J. Wu, Z. X. Wang, L. Q. Chen, H. Li, and F. Wu, “Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity,” Journal of Materials Chemistry A, 10(9), 4517-4532, 2022.
    [48] Y. C. Wang and S. H. Chung, “Development and Optimization of Thin‐Lithium‐Metal Anodes with a Lithium Lanthanum Titanate Stabilization Coating for Enhancement of Lithium–Sulfur Battery Performance,” Small, 20(50), 2406579, 2024.
    [49] B. X. Ye and S. H. Chung, “Incorporation of electronically and ionically conductive additives in high-loading sulfur cathodes in lean-electrolyte lithium–sulfur cells,” Electrochimica Acta, 502, 144794, 2024.
    [50] M. Saccoccio, J. Yu, Z. Lu, S. C. Kwok, J. Wang, K. K. Yeung, M. M. F. Yuen and F. Ciucci, “Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes,” Journal of Power Sources, 365, 43-52, 2017.
    [51] T. Krauskopf, B. Mogwitz, H. Hartmann, D. K. Singh, W. G. Zeier, and J, Janek, “The fast charge transfer kinetics of the lithium metal anode on the garnet‐type solid electrolyte Li6.25Al0.25La3Zr2O12,” Advanced Energy Materials, 10(27), 2000945, 2020.
    [52] J. Z. Guo and C. K. Chan, “Lithium dendrite propagation in Ta-doped Li7La3Zr2O12 (LLZTO): comparison of reactively sintered pyrochlore-to-garnet vs LLZTO by solid-state reaction and conventional sintering,” ACS Applied Materials & Interfaces, 16(4), 4519-4529, 2024.
    [53] W. Ji, B. Luo, Q. Wang, G. Yu, Z. Zhang, Y. Tian, Z. W. Zhao, R. R. Zhao, S. B. Wang, X. W. Wang, B. Zhang, J. F. Zhang, Z.Y. Sang and J. Liang, “Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries,” Nature Communications, 15(1), 9920, 2024.
    [54] Y. Zhao, and L. L. Daemen, “Superionic conductivity in lithium-rich anti-perovskites,” Journal of the American Chemical Society, 134(36), 15042-15047, 2012.
    [55] Z. Deng, D. X. Ni, D. C. Chen, Y. Bian, S. Li, Z. X. Wang, and Y. S. Zhao, “Anti‐perovskite materials for energy storage batteries,” InfoMat, 4(2), e12252, 2022
    [56] J. B. Goodenough, H. P. Hong, and J. A. Kafalas, “Fast Na+-ion transport in skeleton structures,” Materials Research Bulletin, 11(2), 203-220, 1976.
    [57] H. Aono, E. Sugimoto, Y. Sadaaka, N. Imanaka, and G. Y. Adachi, “Ionic conductivity of the lithium titanium phosphate (Li1+ xMxTi2-x(PO4)3, M= Al, Sc, Y, and La) systems,” J. Electrochem. Soc., 136(2), 590-591, 1989.
    [58] C. Li, R. Li, K. N. Liu, R. Si, R. Z. Z. Zhang and Y. S. Hu, “NaSICON: a promising solid electrolyte for solid‐state sodium batteries,” Interdisciplinary Materials, 1(3), 396-416, 2022.
    [59] J. Janek and W. G Zeier, “Challenges in speeding up solid-state battery development,” Nature Energy, 8(3), 230-240, 2023.
    [60] H. P. Hong, “Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors,” Materials Research Bulletin, 13(2), 117-124, 1978.
    [61] K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara, I. Kishida, K. Shitara, C. A. J. Fisher H. Moriwake, I. Tanaka, “Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms,” Energy Mater, 3(8), 980-985, 2013.
    [62] R. Kanno, T. Hata, Y. Kawamoto and M. Irie, “Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system,” Solid state ionics, 130(1-2), 97-104, 2000.
    [63] M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata N. Sonoyama, and Y. Kawamoto, “Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system,” Journal of Solid State Chemistry, 168(1), 140-148, 2002.
    [64] A. C. Kozen, A. J. Pearse, C. F. Lin, M. Noked, and G. W. Rubloff, “Atomic layer deposition of the solid electrolyte LiPON,” Chemistry of Materials, 27(15), 5324-5331, 2015.
    [65] P. Lopez-Aranguren, M. Reynaud, P. Głuchowski, A.Bustinza, M. Galceran, J. M. Lopez del Amo, M. Armand and M. “Casas-Cabanas, Crystalline LiPON as a bulk-type solid electrolyte,” ACS energy letters, 6(2), 445-450, 2021.
    [66] S. Kalnaus, A. S. Westover, M. Kornbluth, E. Herbert, and N. J. Dudney, “Resistance to fracture in the glassy solid electrolyte Lipon,” Journal of Materials Research, 36(4), 787-796, 2021.
    [67] S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, and J. Janek, “Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy,” Solid State Ionics, 278, 98-105, 2015
    [68] Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, and Q. Zhang, Critical current density in solid‐state lithium metal batteries: mechanism, influences, and strategies. Advanced Functional Materials, 31(18), 2009925, 2021.
    [69] D. C. Ginnings, and T. E. Phipps, “Temperature-conductance curves of solid salts. III. Halides of lithium,” Journal of the American Chemical Society, 52(4), 1340-1345, 1930.
    [70] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Foundations of Crystallography, 32(5), 751-767, 1976.
    [71] L. Zhou, C. Y. Kwok, A. Shyamsunder, Q. Zhang, X. H. Wu, and L. F. Nazar, “A new halospinel superionic conductor for high-voltage all solid state lithium batteries,” Energy & Environmental Science, 13(7), 2056-2063, 2020.
    [72] T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki and S. Hasegawa, “Solid halide electrolytes with high lithium‐ion conductivity for application in 4 V class bulk‐type all‐solid‐state batteries,” Advanced Materials, 30(44), 1803075, 2018.
    [73] H. R. Kwak, D. S. Han, J. P. Son, J. S. Kim, J. Y. Park, K. W. Nam, H. S. Kim and Y. S. Jung, “Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+ xZr1-xMxCl6 (M= In, Sc),” Chemical Engineering Journal, 437, 135413, 2022.
    [74] S. X. Deng, M. Jiang, N. Chen, W. H. Li, M. Zheng, W. F. Chen, R. Y. Li, H. Huang, J. T. Wang, C.V. sigh and X. L. Sun, “Regulating electronic conductivity at cathode interface for low‐temperature Halide‐based all‐solid‐state batteries,” Advanced Functional Materials, 32(45), 2205594, 2022.
    [75] T. Koç, M. Hallot, E. Quemin, B. Hennequart, R. Dugas, A. M. Abakumov, C. Lethien and J. M. Tarascon, “Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries,” ACS Energy Letters, 7(9), 2979-2987, 2022.
    [76] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, “A lithium superionic conductor,” Nature materials, 10(9), 682-686, 2011.
    [77] S. Wang, M. X. Tang, Q. H. Zhang, B. H. Li, S. Ohno, F. Walther, R. J. Pan, X.F. Xu, C. Z. Xin, W. B. Zhang, L. L. Li, Y. Shen, F. H. Richter, J. Janek and C. W. Nan, “Lithium argyrodite as solid electrolyte and cathode precursor for solid‐state batteries with long cycle life,” Advanced Energy Materials, 11(31), 2101370, 2021.
    [78] L. D. Zhou, N. Minafra, W. G. Zeier and L. F. Nazar, “Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries,” Accounts of chemical research, 54(12), 2717-2728, 2021.
    [79] M. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek and W. G. Zeier, “Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X= Cl, Br, I),” Journal of the American Chemical Society, 139(31), 10909-10918, 2017.
    [80] P. Adeli, J. D. Bazak, K. H. Park, I. Kochetkov, A. Huq, G. R. Goward, and L. F. Nazar, “Boosting solid‐state diffusivity and conductivity in lithium superionic argyrodites by halide substitution,” Angewandte Chemie International Edition, 58(26), 8681-8686, 2019.
    [81] K. H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, “High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries,” ACS Energy Letters, 5(2), 533-539, 2020.
    [82] C. Dietrich, M. Sadowski, S. Sicolo, D. A. Weber, S. J. Sedlmaier, K. S. Weldert, S. Indris, K. Albe, J. Janek and W. G. Zeier, “Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6,” Chemistry of Materials, 28(23), 8764-8773, 2016.
    [83] J. E. Lee, K. H. Park, J. C. Kim, T. U. Wi, A. R. Ha, Y. B. Song, D. Y. Oh, J. H. Woo, S. H. Kweon, S. J. Yeom, W. S. Cho, K. S. Kim, H. W. Lee, S. K. Kwak and Y. S. Jung, “Universal solution synthesis of sulfide solid electrolytes using alkahest for all‐solid‐state batteries,” Advanced Materials, 34(16), 2200083, 2022.
    [84] Y. Subramanian, R. Rajagopal, and K. S. Ryu, “Synthesis air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6-xPS5-xCl1.0Brx) for all-solid-state lithium batteries,” Journal of Power Sources, 520, 230849, 2022.
    [85] S. V. Patel, S. Banerjee, H. Y. Liu, P. B. Wang, P. H. Chien, X. Y. Feng, J. Liu, S. P. Ong and Y. Y. Hu, “Tunable lithium-ion transport in mixed-halide argyrodites Li6–xPS5–xClBrx: An unusual compositional space,” Chemistry of Materials, 33(4), 1435-1443, 2021.
    [86] Y. Li, W. Arnold, J. B. Jasinski, A. Thapa, G. Sumanasekera, M. Sunkara, B. Narayanan, T. Druffel and H. Wang, “Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries,” Electrochimica Acta, 363, 137128, 2020.
    [87] F. P. Zhao, J. W. Liang, C. Yu, Q. Sun, X. N. Li, K. Adair, C. H. Wang, Y. Zhao, S. M. Zhang, W. H. Li, S. X. Deng, R.Y. Li, Y. N. Huang, H. Huang, L. Zhang, S. Q. Zhao, S. G. Lu and X. L. Sun, “A versatile Sn‐substituted argyrodite sulfide electrolyte for all‐solid‐state Li metal batteries,” Advanced Energy Materials, 10(9), 1903422, 2020.
    [88] C. Yu, L. van Eijck, S. Ganapathy and M. Wagemaker, “Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries,” Electrochimica Acta, 215, 93-99, 2016.
    [89] L. Zhou, K. H. Park, X. Sun, F. Lalère, T. Adermann, P. Hartmann and L. F. Nazar, “Solvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity,” ACS Energy Letters, 4(1), 265-270, 2018.
    [90] Z. Z. Zhang and L. F. Nazar, “Exploiting the paddle-wheel mechanism for the design of fast ion conductors,” Nature Reviews Materials, 7(5), 389-405, 2022.
    [91] N. H. H. Phuc, M. Totani, K. Morikawa, H. Muto and A. Matsuda, “Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium,” Solid State Ionics, 288, 240-243, 2016.
    [92] Y. Liu, H. L. Peng, H. Su, Y. Zhong, X. L. Wang, X. H. Xia, C. D. Gu and J. P. Tu, “Ultrafast Synthesis of I‐Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity,” Advanced Materials, 34(3), 2107346, 2021.
    [93] M. Zhao, B.-Q. Li, H.-J. Peng, H. Yuan, J.-Y. Wei, J.-Q. Huang, “Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities,” Angewandte Chemie, 59(31), 12636-12652, 2020.
    [94] Z.-G. Jia, X.X. Zhang, M.F. Qian, Y.M. Jin, Y.P. Xiong, “Local ionic structure unit design in sulfide solid electrolyte flakes by improving pressing process,” Chemical Engineering Journal, 435, 134663, 2022.
    [95] A. Hayashi, S. Hama, T. Minami, M. Tatsumisago, “Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses,” Electrochemistry Communications, 5(2), 111-114, 2003 
    [96] R. Mercier, J.-P, Malugani, B. Fahys, G. Robert, “Superionic conduction in Li2S-P2S5-LiI-glasses,” Solid State Ionics," 5(10): 663-666, 1981.
    [97] R. Kanno and M. Murayama, “Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system,” Journal of the electrochemical society, 148(7), A742, 2001.
    [98] C. Yu, F. P. Zhao, J. Luo, L. Zhang, and X. L. Sun, “Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics,” Nano Energy, 83, 105858, 2021
    [99] R. P. Rao, S. Adams, “Studies of lithium argyrodite solid electrolytes for all‐solid‐state batteries,” physica status solidi (a), 208(8), 1804-1807, 2021.
    [100] N.J.J De Klerk, I. Rosłoń, and M. Wagemaker, “Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder,” Chemistry of Materials, 28(21), 7955-7963, 2016.
    [101] C. Dietrich, D.A. Weber, S.J. Sedlmaier, S. Indris, S.P. Culver, D. Walter, J. Janek and W.G. Zeier, “Lithium ion conductivity in Li2S-P2S5 glasses—Building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7,” Journal of Materials Chemistry A, 5: 18111–18119, 2017.
    [102] H. Stöffler, T. Zinkevich, M. Yavuz, A.L. Hansen, M. Knapp, J. Bednarcik, S. Randau, F.H. Richter, J. Janek and S. Indris, “Amorphous versus crystalline Li3PS4: local structural changes during synthesis and Li ion mobility,” The Journal of Physical Chemistry C, 2019, 123(16), 10280-10290.
    [103] A. M. Shotwell, M. C. Schulze, P. Yox, C. Alaniz and A. E. Maughan, “Tetrahedral Tilting and Lithium‐Ion Transport in Halide Argyrodites Prepared by Rapid, Microwave‐Assisted Synthesis,” Advanced Functional Materials, 2500237, 2025.
    [104] F. Marchini, B. Porcheron, G. Rousse, L.A. Blanquer, L. Droguet, D. Foix, T. Koç, M. Deschamps and J. M. Tarascon, “The hidden side of nanoporous β‐Li3PS4 solid electrolyte,” Advanced Energy Materials, 11(34), 2101111, 2021
    [105] M. J. Counihan, K. S. Chavan, P. Barai, D. J. Powers, Y. P. Zhang, V. Srinivasan, and S. Tepavcevic, “The phantom menace of dynamic soft-shorts in solid-state battery research,” Joule, 8(1), 64-90, 2024.
    [106] C. Li, and Y. Du, “Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte,” ACS nano, 19(4), 4121-4155, 2025.
    [107] Z. Jiang, T. B. Liang, Y. Liu, S. Z. Zhang, Z. X. Li, D. H. Wang, X. L. Wang, C. D. Gu and J. Tu, “Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution,” ACS Applied Materials & Interfaces, 12(49), 54662-54670, 2020.
    [108] R. C. Xu, F. H. Han, F, X. Ji, X. L. Fan, J. P. Tu and C. S. Wang, “Interface engineering of sulfide electrolytes for all-solid-state lithium batteries,” Nano Energy, 53, 958-966, 2018.
    [109] X. L. Fan, X. Ji, F. D. Han, J. Yue, J. Chen, L. Chen, T. Deng J. J. Jiang and C. S. Wang, “Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery,” Science advances, 4(12), eaau9245, 2018.
    [110] H. F. Yan, H. C. Wang, D. H. Wang, X. Li, Z. L. Gong, Y. Yang, “In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading,” Nano letters, 19(5), 3280-3287, 2019.
    [111] R. Li, P. S. Lu, X. M. Liang, L. W. Liu, M. Avdeev, Z. Deng, S. Li, K. Q. Xu, J. W. Feng, R. Si, F. Wu, Z.Z Zhang and Y.-S. Hu, “Superionic conductivity invoked by enhanced correlation migration in lithium halides solid electrolytes,” ACS Energy Letters, 9(3), 1043-1052, 2024.
    [112] Z. K. Wu, R. Wang, C. Yu, C. C. Wei, S. Chen, C. Liao, S. J. Cheng and J. Xie, “Origin of the high conductivity of the LiI-doped Li3PS4 electrolytes for all-solid-state lithium–sulfur batteries working in wide temperature ranges,” Industrial & Engineering Chemistry Research, 62(1), 96-104, 2022.
    [113] H. Z. Jiang, Y. Han, H. Wang, Y. H. Zhu, Q. P. Guo, H. L. Jiang, C. M. Zheng and K. Xie, Li2S–Li3PS4 (LPS) “Composite Synthesized by Liquid‐Phase Shaking for All‐Solid‐State Lithium–Sulfur Batteries with High Performance,” Energy Technology, 8(6), 2000023, 2020.
    [114] S.-K. Jiang, S.-C. Yang, W.-H. Huang, H.-Y. Sung, R.-Y. Lin, J.-N. Li, B.-Y. Tsai, T. Agnihotei, Y. Nikodimos, C.-H. Wang Shawn D. Lin, C.-C. Wang, S.-H. Wu, W.-N. Su and B. J. Hwang, “Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO2 adsorption,” Journal of Materials Chemistry A, 11(6), 2910-2919, 2023.
    [115] Y. Zhao, J. Q. Liu, Y. Zhang, H. Zhu, J. Yang, Y. Nuli, and J. L. Wang, “Realizing the dendrite-free sulfide-based all-solid-state Li metal battery by surface design,” Energy Storage Materials, 69, 103432, 2024.
    [116] G.-L. Zhu, C.-Z. Zhao, H.-J. Peng, H. Yuan, J.-K. Hu, H.-X. Nan, Y. Lu, X.-Y. Liu, J.-Q. Huang, C. X. He, J. Zhang and Q. Zhang, “A self‐limited free‐standing sulfide electrolyte thin film for all‐solid‐state lithium metal batteries,” Advanced Functional Materials, 31(32), 2101985, 2021.
    [117] R. Rajagopal, and K.-S. Ryu, “Structural investigations, visualization, and electrolyte properties of silver halide-doped Li7P3S11 lithium superionic conductors,” ACS Sustainable Chemistry & Engineering, 9(3), 1105-1117, 2021.
    [118] X. Ji, S. Y. Hou, P. F. Wang, X. Z. He, N. Piao, J. Chen, X. L. Fan and C. S. Wang, “Solid‐state electrolyte design for lithium dendrite suppression,” Advanced Materials32(46), 2002741, 2020.
    [119] Y. X. Wang, H. C. Hao, K. G. Naik, B. S. Vishnugopi, C. D. Fincher, Q. Q. Yan, V. Raj, H. Celio, G. Yang, H. Fang, Y.-M. Chiang, F. A. Perras, J. Watt, P. P. Mukherjee and D. Mitlin, “Mechanical milling–induced microstructure changes in argyrodite LPSCl solid‐state electrolyte critically affect electrochemical stability,” Advanced Energy Materials, 14(23), 2304530, 2024.
    [120] J. W. Sang, K. C. Pan, B. Tang, Z. Zhang, Y. Y. Liu and Z. Zhou, “One stone, three birds: an air and interface stable argyrodite solid electrolyte with multifunctional nanoshells,” Advanced Science, 10(32), 2304117, 2023.
    [121] J. Yang, J. Peng, Y. Lei, J. Q. Zeng, G. Li, Y. Q. Shen, B. B. Chang, L. P. Zheng and X. Y. Wang, “Modification and supercapacitive performance enhancement of calcium carbide-derived carbon prepared by a green solvent-free mechanochemical route,” ACS Applied Energy Materials, 6(11), 6029-6040, 2023.
    [122] B. Pang, Z. Wu, W. K. Zhang, H. Huang, Y. P. Gan, Y. Xia, X. P. He X. H. Xie and J. Zhang, “Ag nanoparticles incorporated interlayer enables ultrahigh critical current density for Li6PS5Cl-based all-solid-state lithium batteries,” Journal of Power Sources, 563, 232836, 2023.
    [123] C. C. Wei, R. Wang, Z. K. Wu, Q. Y. Luo, Z. L. Jiang, L. Ming, L. Zhang, H. C. Lu, G. S. Li, L.P. Li,C. Yu and S. J.Cheng, “Dual N-modification enables high-performance Solid-State Li metal batteries with Li5.5PS4.5Cl1.5,” Chemical Engineering Journal, 476, 146531, 2023.
    [124] J. Chen, H. N. Chen, and B. B. Tian, “Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries,” Chinese Chemical Letters, 36(7), 109775, 2025.
    [125] T.-T. Zuo, F. Walther, J. H. Teo, R. Rueß, Y. B. Wang, M. Rohnke, D. Schröder, L. F. Nazar and J. Janek, “Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid‐State Batteries,” Angewandte Chemie, 135(7), e202213228, 2023.
    [126] Y. E. Choi, K. H. Park, D. H. Kim, D. Y. Oh, H. R. Kwak, Y.-G. Lee and Y. S. Jung, “Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all‐solid‐state lithium‐ion batteries,” ChemSusChem, 10(12), 2605-2611, 2017.
    [127] K. Xu, “Interfaces and interphases in batteries,” Journal of Power Sources, 559, 232652, 2023.
    [128] T. Kobayashi, T. Ohnishi, T. Osawa, A. Pratt, S. Tear, S. Shimoda, H. Baba M. Laitinen and T. Sajavaara, “In‐Operando Lithium‐Ion Transport Tracking in an All‐Solid‐State Battery,” Small, 18(46), 2204455, 2022.
    [129] G. D. Wang, P. P. Dong, B. Liang, C. G. Lin, X. Shen, S. X. Dai, and Q. Jiao, “An amorphous superionic conductor Li3PS4‐xLiBr with high conductivity and good air stability by halogen incorporation,” Journal of the American Ceramic Society, 105(12), 7751-7759, 2022.
    [130] T. Yersak, J. R. Salvador, R. D. Schmidt, and M. Cai, “Hot pressed, fiber-reinforced (Li2S)70(P2S5)30 solid-state electrolyte separators for Li metal batteries,” ACS Applied Energy Materials, 2(5), 3523-3531, 2019.
    [131] K. N. Wood, K. X. Steirer, S. E. Hafner, C. Ban, S. Santhanagopalan, S. H. Lee and G. Teeter, “Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes,” Nature communications, 9(1), 2490, 2018.
    [132] L. Zhou, M. K. Tufail, N. Ahmad, T. L. Song, R. J. Chen and W. Yang, “Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium–sulfur batteries,” ACS Applied Materials & Interfaces, 13(24), 28270-28280, 2021.
    [133] J. Garche, “Encyclopedia of electrochemical power sources,” Elsevier, 2024.
    [134] C. Yu, S. Ganapathy, J. Hageman, L. Van Eijck, E. R. Van Eck, L. Zhang, T. Schwietert, S. Basak, E. M. Kelder and M. Wagemaker, “Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte,” ACS applied materials & interfaces, 10(39), 33296-33306 ,2018.
    [135] Q. Zhao, Y. Y. Lu, Z. Q. Zhu, Z. L. Tao, and J. Chen, “Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode,” Nano letters, 15(9), 5982-5987, 2015.
    [136] M. J. Giammona, J. Kim, Y. Kim, P. Medina, K. Nguyen, H. Bui, G. O. Jones, A. T. Tek, L. Sundberg, A. Fong and Y. H. La, “Oxygen assisted lithium‐iodine batteries: Towards practical iodine cathodes and viable lithium metal protection strategies,” Advanced Materials Interfaces, 10(17), 2300058, 2023.

    QR CODE