簡易檢索 / 詳目顯示

研究生: 楊博婷
Yang, Bo-Ting
論文名稱: 銫鉛鹵化物鈣鈦礦微米半球之載子聲子耦合現象及雷射特性
Carrier-Phonon Coupling and Lasing Action in Cesium Lead Halide Perovskite Micro-hemispheres
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 溴化銫鉛鈣鈦礦載子聲子耦合偏極子微米晶體雷射自發輻射耦合因子
外文關鍵詞: CsPbBr3, perovskite, carrier-phonon coupling, polaron, microstructure, laser, spontaneous emission coupling factor
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   全無機金屬鹵化物鈣鈦礦材料擁有低成本以及穩定的優勢,已經廣泛地被應用於各類型的光電元件中,因此,受光激發載子的複合機制也漸漸被討論,其中包括了載子聲子耦合現象的研究,然而,目前還沒有研究指出如何在溴化銫鉛鈣鈦礦中控制載子聲子耦合現象。
      在本論文中,我們成功以化學氣象沉積法製備出溴化銫鉛鈣鈦礦微米半球晶體,透過時間解析光致發光(TRPL)光譜的分析,我們觀察到偏極子(polaron) 存在於溴化銫鉛鈣鈦礦中。為了更進一步研究影響偏極子形成的因素,我們經由陰離子置換法,將已製備出的溴化銫鉛鈣鈦礦微米半球晶體轉換為混和鹵素銫鉛鈣鈦礦微米半球晶體,透過分析不同鹵素鈣鈦礦的時間解析光致發光光譜,以及不同發光能量的載子生命期,證實置換鹵素的方式改變了材料的離子性,並能夠控制偏極子的形成。最後,我們在不同溫度下量測溴化銫鉛鈣鈦礦的時間解析光致發光光譜,觀察到偏極子也會受到熱擾動晶格的影響而形成。
      此外,高品質雷射也實現於溴化銫鉛鈣鈦礦以及混和鹵素銫鉛鈣鈦礦微米半球晶體中,其中溴化銫鉛鈣鈦礦擁有高達11284的品質因子(Q factor)。為了進一步討論共振腔大小對於雷射特性的影響,在本文中也呈現了不同共振腔大小和雷射閾值以及自發輻射耦合因子的關係,其中雷射閾值隨著共振腔大小變大而降低,而自發輻射耦合因子隨著共振腔大小變小而增高。

    All-inorganic halide perovskites (CsPbX3) have attracted massive attention because of their stability and the applications in optoelectronic devices. Therefore, the mechanism of the carrier recombination is necessary to be understood intensively. The carrier-phonon coupling induced carrier localization effect in Cesium Lead Bromide (CsPbBr3) perovskite was investigated here. CsPbBr3 perovskite micro-hemispheres were growth in a horizontal quartz tube furnace via chemical vapor deposition (CVD). Through performing time-resolved photoluminescence (TRPL), we found the evidence of the existence of polarons in CsPbBr3 perovskite. To further gain how the ionicity of the materials influence the formation of polarons, we carried out the halide composition-dependent TRPL and spectral-dependent TRPL. The mixed-halide perovskite CsPb(Br/I)3 and CsPb(Br/Cl)3 were prepared with the vapor-assist anion-exchange method. We discovered the polarons would form as the halide varies from iodine to chlorine, which supports the theory of stronger carrier-phonon coupling as higher ionicity. We also performed the temperature-dependent TRPL to investigate how the temperature impact the formation of polarons in CsPbBr3 perovskite and found the formation of polarons is associated with the lattice vibration caused by thermal energy. Finally, we achieved the high-quality lasing action in CsPbBr3 (Q~11284) and the mixed-halide perovskite (Q~10041 and 8770 for CsPb(Br/I)3 and CsPb(Br/Cl)3, respectively) micro-hemispheres. The lasing threshold and spontaneous emission coupling factor of the various cavity sizes were studied.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1. Preface 1 1.2. Historical Review 2 1.2.1. Perovskite 2 1.2.2. Carrier-Phonon Coupling and Polarons 9 1.3. Motivation 13 Chapter 2. Physical Theories 14 2.1. Characteristics of Perovskites 14 2.1.1. Structural Properties 14 2.1.2. Optical Properties 17 2.1.2.1. Basic Optical properties 17 2.1.2.2. Photoluminescence 18 2.2. Carrier-Phonon Coupling 20 2.3. Lasing Behavior in CsPbBr3 22 2.4. Spontaneous Emission Coupling Factor 23 Chapter 3. Experimental Setups 24 3.1. Synthesis of Perovskite Microcrystals 24 3.1.1. Chemical Vapor Deposition 24 3.1.2. Vapor Anion-Exchange Method 26 3.2. Analysis of Material Morphologies and Structures 28 3.2.1. Scanning Electron Microscope (SEM) 28 3.2.2. X-ray Diffraction (XRD) 29 3.2.3. High-Resolution Transmission Electron Microscope (HRTEM) 31 3.3. Measurement of Optical Properties 32 3.3.1. Micro-Photoluminescence (micro-PL) 32 3.3.2. Time-Resolved Photoluminescence (TRPL) System 34 3.3.3. Micro-Optical Absorption 36 3.3.4. Temperature-Controlling System 37 Chapter 4. Results and Discussions 38 4.1. Morphology and Structure 38 4.1.1. Optical Microscope and SEM Images 38 4.1.2. XRD Analysis 40 4.1.3. HRTEM Analysis 41 4.1.4. EDX Analysis 43 4.2. Basic Optical Properties 44 4.2.1. Optical Absorption 44 4.2.2. Steady-State PL 46 4.3. Polarons in CsPbBr3 48 4.3.1. Time-Resolved PL Analysis 48 4.3.2. Spectral-Dependent Time-Resolved PL Analysis 49 4.4. Ionicity Effect to Polarons Formation 50 4.4.1. Time-Resolved PL Analysis 50 4.4.2. Spectral-Dependent Time-Resolved PL Analysis 51 4.5. Temperature Effect to Polarons Formation 54 4.6. Basic Lasing Characteristics 56 4.6.1. Pristine CsPbBr3 56 4.6.2. Mixed-Halide CsPbBr2.5I0.5 and CsPbBr2.7Cl0.3 58 4.6.3. Comparison of Lasing Properties for Pristine CsPbBr3, Mixed-Halide CsPbBr2.5I0.5 and CsPbBr2.7Cl0.3 60 4.7. Cavity Size-Dependent Lasing Action 61 4.7.1. Size-Dependent Lasing Threshold Analysis 69 4.7.2. Size-Dependent Spontaneous Emission Coupling Factor Analysis 72 Chapter 5. Conclusions and Future Works 74 5.1. Conclusions 74 5.2. Future works 75 References 76

    1 G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, Nano Letters 16 (8), 4838 (2016).
    2 C. J. Cunzhu Tong, Nanoscale Semiconductor Lasers. (Matthew Deans, 2019), p.53.
    3 J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, and J. Liu, Journal of the American Chemical Society 138 (49), 15829 (2016).
    4 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Letters 15 (6), 3692 (2015).
    5 N. Ding, D. Zhou, X. Sun, W. Xu, H. Xu, G. Pan, D. Li, S. Zhang, B. Dong, and H. Song, Nanotechnology 29 (34), 345703 (2018).
    6 H. Yuan, Y. Zhao, J. Duan, Y. Wang, X. Yang, and Q. Tang, Journal of Materials Chemistry A 6 (47), 24324 (2018).
    7 Y. Li, Z. Shi, L. Lei, F. Zhang, Z. Ma, D. Wu, T. Xu, Y. Tian, Y. Zhang, G. Du, C. Shan, and X. Li, Chemistry of Materials 30 (19), 6744 (2018).
    8 Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Nano Letters 14 (10), 5995 (2014).
    9 A. Dey, P. Rathod, and D. Kabra, Advanced Optical Materials 6 (11), 9 (2018).
    10 C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, and A. Y. Silov, Acs Nano 11 (11), 11024 (2017).
    11 H. Jin, E. Debroye, M. Keshavarz, I. G. Scheblykin, M. B. J. Roeffaers, J. Hofkens, and J. A. Steele, Materials Horizons (2019).
    12 H. Zhu, K. Miyata, Y. Fu, J. Wang, P. P. Joshi, D. Niesner, K. W. Williams, S. Jin, and X. Y. Zhu, Science 353 (6306), 1409 (2016).
    13 J. Deng, J. Li, Z. Yang, and M. Wang, Journal of Materials Chemistry C 7 (40), 12415 (2019).
    14 Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang, Nano Today 10 (3), 355 (2015).
    15 G. Rose, Annalen der Physik 124 (12), 551 (1839).
    16 A. Chilvery, S. Das, P. Guggilla, C. Brantley, and A. Sunda Meya, Science and Technology of Advanced Materials 17 (1), 650 (2016).
    17 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131 (17), 6050 (2009).
    18 C. Zuo, H. J. Bolink, H. Han, J. Huang, D. Cahen, and L. Ding, Advanced Science 3 (7), 1500324 (2016).
    19 Best PCE of research-cell chart, https://www.nrel.gov/pv/cell-efficiency.html Accessed: 2020/05/03.
    20 O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE Journal of Photovoltaics 2 (3), 303 (2012).
    21 Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nature Nanotechnology 9 (9), 687 (2014).
    22 A. Perumal, S. Shendre, M. J. Li, Y. K. E. Tay, V. K. Sharma, S. Chen, Z. H. Wei, Q. Liu, Y. Gao, P. J. S. Buenconsejo, S. T. Tan, C. L. Gan, Q. Xiong, T. C. Sum, and H. V. Demir, Scientific Reports 6, 10 (2016).
    23 A. Singh, N. C. Chiu, K. M. Boopathi, Y. J. Lu, A. Mohapatra, G. Li, Y. F. Chen, T. F. Guo, and C. W. Chu, ACS Applied Materials & Interfaces 11 (38), 35088 (2019).
    24 M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Applied Physics Letters 65 (6), 676 (1994).
    25 B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, M. Alsari, X. J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H. J. Snaith, J. Wang, N. C. Greenham, R. H. Friend, and D. Di, Nature Photonics 12 (12), 783 (2018).
    26 G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nature Materials 13 (5), 476 (2014).
    27 Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X. Y. Zhu, and S. Jin, Nano Letters 16 (2), 1000 (2016).
    28 S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L. W. Wang, S. R. Leone, and P. Yang, Proceedings of the National Academy of Sciences 113 (8), 1993 (2016).
    29 Y. C. Shao, Y. J. Fang, T. Li, Q. Wang, Q. F. Dong, Y. H. Deng, Y. B. Yuan, H. T. Wei, M. Y. Wang, A. Gruverman, J. Shielda, and J. S. Huang, Energy & Environmental Science 9 (5), 1752 (2016).
    30 H. C. Zhang, X. Fu, Y. Tang, H. Wang, C. F. Zhang, W. W. Yu, X. Y. Wang, Y. Zhang, and M. Xiao, Nature Communications 10, 8 (2019).
    31 J. Xing, Q. Wang, Q. F. Dong, Y. B. Yuan, Y. J. Fanga, and J. S. Huang, Physical Chemistry Chemical Physics 18 (44), 30484 (2016).
    32 A. Waleed and Z. Fan, Science Bulletin 62 (2095-9273), 645 (2017).
    33 R. P. Feynman, Physical Review 97 (3), 660 (1955).
    34 M. Fox, Optical Properties of Solids. (Oxford University Press, 2001), pp.215.
    35 Y. Rakita, S. R. Cohen, N. K. Kedem, G. Hodes, and D. Cahen, MRS Communications 5 (4), 623 (2015).
    36 X. Y. Zhu and V. Podzorov, The Journal of Physical Chemistry Letters 6 (23), 4758 (2015).
    37 K. Miyata, T. L. Atallah, and X. Y. Zhu, Science Advances 3 (10), e1701469 (2017).
    38 K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De Angelis, and X. Y. Zhu, Science Advances 3 (8), e1701217 (2017).
    39 K. T. Munson, E. R. Kennehan, G. S. Doucette, and J. B. Asbury, Chem 4 (12), 2826 (2018).
    40 A. D. Wright, C. Verdi, R. L. Milot, G. E. Eperon, M. A. Pérez Osorio, H. J. Snaith, F. Giustino, M. B. Johnston, and L. M. Herz, Nature Communications 7 (1), 11755 (2016).
    41 A. Mahata, D. Meggiolaro, and F. De Angelis, The Journal of Physical Chemistry Letters 10 (8), 1790 (2019).
    42 Y. Fu, H. Zhu, J. Chen, M. P. Hautzinger, X. Y. Zhu, and S. Jin, Nature Reviews Materials 4 (3), 169 (2019).
    43 T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, and M. D. McGehee, Journal of Materials Chemistry A 5 (23), 11483 (2017).
    44 P. Cottingham and R. L. Brutchey, Chemistry of Materials 30 (19), 6711 (2018).
    45 V. M. Goldschmidt, Naturwissenschaften 14 (21), 477 (1926).
    46 J. Li, H. Zhang, S. Wang, D. Long, M. Li, D. Wang, and T. Zhang, Materials (Basel, Switzerland) 11 (5), 717 (2018).
    47 S. Cho and S. H. Yun, Communications Chemistry 3 (1), 15 (2020).
    48 Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, and J. Feldmann, Angewandte Chemie-International Edition 55 (44), 13887 (2016).
    49 A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, and X. Y. Zhu, Nature Communications 10 (1), 265 (2019).
    50 E. Hendry, M. Koeberg, and M. Bonn, Physical Review B 76 (4), 045214 (2007).
    51 B. Romeira and A. Fiore, IEEE Journal of Quantum Electronics 54 (2), 1 (2018).
    52 R. J. Ram, E. Goobar, M. G. Peters, L. A. Coldren, and J. E. Bowers, IEEE Photonics Technology Letters 8 (5), 599 (1996).
    53 L. Reeves, Y. Wang, and T. F. Krauss, Advanced Optical Materials 6 (19), 1800272 (2018).
    54 Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Physica Status Solidi (A) 183 (1), 41 (2001).
    55 X. Chen, D. Han, Y. Su, Q. Zeng, L. Liu, and D. Shen, physica status solidi (RRL) – Rapid Research Letters 12 (8), 1800193 (2018).
    56 R. Zhou, X. Lu, Q. Yang, and P. Wu, Chinese Chemical Letters 30 (10), 1843 (2019).
    57 T. Paul, B. K. Chatterjee, S. Maiti, S. Sarkar, N. Besra, B. K. Das, K. J. Panigrahi, S. Thakur, U. K. Ghorai, and K. K. Chattopadhyay, Journal of Materials Chemistry C 6 (13), 3322 (2018).
    58 D. D. Zhang, Y. M. Yang, Y. Bekenstein, Y. Yu, N. A. Gibson, A. B. Wong, S. W. Eaton, N. Kornienko, Q. Kong, M. L. Lai, A. P. Alivisatos, S. R. Leone, and P. D. Yang, Journal of the American Chemical Society 138 (23), 7236 (2016).
    59 H. P. He, Q. Q. Yu, H. Li, J. Li, J. J. Si, Y. Z. Jin, N. N. Wang, J. P. Wang, J. W. He, X. K. Wang, Y. Zhang, and Z. Z. Ye, Nature Communications 7, 7 (2016).
    60 T. Schmidt, K. Lischka, and W. Zulehner, Physical Review B 45 (16), 8989 (1992).
    61 H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, and A. L. Rogach, Npg Asia Materials 8, 15 (2016).
    62 P. P. Li, B. Bonef, M. Khoury, G. Lheureux, H. J. Li, J. J. Kang, S. Nakamura, and S. P. DenBaars, Superlattices and Microstructures 113, 684 (2018).
    63 F. J. Cheng, S. Y. Hu, L. Y. Chen, Y. C. Lee, G. Z. Yin, K. K. Tiong, and J. L. Shen, Journal of Luminescence 197, 248 (2018).
    64 W. Li, A. S. Vasenko, J. Tang, and O. V. Prezhdo, The Journal of Physical Chemistry Letters 10 (20), 6219 (2019).
    65 B. Tang, H. X. Dong, L. X. Sun, W. H. Zheng, Q. Wang, F. F. Sun, X. W. Jiang, A. L. Pan, and L. Zhang, Acs Nano 11 (11), 10681 (2017).
    66 B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, and L. Zhang, Journal of Materials Chemistry C 6 (43), 11740 (2018).
    67 Q. Zhang, R. Su, X. F. Liu, J. Xing, T. C. Sum, and Q. H. Xiong, Advanced Functional Materials 26 (34), 6238 (2016).
    68 D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S. L. Chuang, and P. Yang, Acs Nano 4 (6), 3270 (2010).
    69 J. M. Liu, Principles of Photonics. (Cambridge University Press, 2016).
    70 Y. Z. Huang, Z. Pan, and R. H. Wu, Journal of Applied Physics 79 (8), 3827 (1996).
    71 A. K. Bhowmik, Applied Optics 39 (18), 3071 (2000).
    72 K. Nozaki, S. Kita, and T. Baba, Optics Express 15 (12), 7506 (2007).

    無法下載圖示 校內:2025-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE