簡易檢索 / 詳目顯示

研究生: 洪靜慧
Hung, Ching-hui
論文名稱: 應用Hierarchical Oligonucleotide Primer Extension (HOPE)技術分析台灣水庫中發生藻華藍綠菌群之豐富度
Determination of the Relative Abundance for Bloom-occurring Cyanobacteria in Freshwater Reservoirs of Taiwan by Hierarchical Oligonucleotide Primer Extension (HOPE)
指導教授: 曾怡禎
Tseng, I-cheng
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物多樣性研究所
Institute of Biodiversity
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: qPCR藍綠菌群落Hierarchical oligonucleotide primer extension (HOPE)Cylindrospermopsis raciborskii
外文關鍵詞: qPCR, Hierarchical oligonucleotide primer extension (H, Cyanobacteria community, Cylindrospermopsis raciborskii
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,藍綠菌形成的藻華現象在世界各地造成許多公共衛生上的威脅,因此,對於造成藻華的藍綠菌群落結構的偵測,特別針對是有產毒能力藍綠菌,將有助於湖泊或水庫的經營管理。在此實驗中,我們使用hierarchical oligonucleotide primer extension (HOPE) 此一新的分子生物技術來探討在台灣水庫中常見形成藻華藍綠菌的相對比例。在HOPE實驗中,我們針對Microcystis, Cylindrospermopsis raciborskii, Planktothrix, Nodularia, and Anabaena /Aphanizomonen設計了五個專一性引子,及一個廣泛性引子來偵測彼此間的相對比例。實驗結果顯示C. raciborskii存在於所有測試樣本中,其結果與顯微鏡觀察相符合。為了進一步探討台灣水庫中C. raciborskii族群的基因多樣性,我們建構仁義潭及太湖樣本的16S-23S ITS gene序列的分子選殖資料庫,經由與NCBI資料庫的序列做親緣關係分析,結果顯示這些16S-23S ITS gene序列可以進一步分成兩型,一型序列與歐洲分離出來的C.raciborskii有高度相似性 (EU type),另一型則獨立於目前已知C. raciborskii的分離株 (TW type)。藉由HOPE技術進一步分析這兩群C. raciborskii在仁義潭及太湖中所佔的相對比例,發現在太湖中TW type為優勢群,而在仁義潭樣本中,TW type 與 EU type 則較均質性的分佈。此結果與qPCR的驗證有一致性的結果,因此可以證明HOPE對於探討藍綠菌群落結構是一個快速又具有專一性的的分子方法。

    Cyanobacteria blooms has been a public health threat all over the world, thus, it is necessary to clarify the community structure, especially those toxin-producing cyanobacteria prior to further water quality management. Here, we introduced a new method termed hierarchical oligonucleotide primer extension (HOPE) to determine the relative abundance of predominant cyanobacteria present in Taiwan reservoirs. Six primers, including one universal primer and five groups (Microcystis, Cylindrospermopsis raciborskii, Planktothrix, Nodularia, and Anabaena /Aphanizomonen) of specific primers targeting to 16S rRNA gene were designed to apply to HOPE reaction. Results showed that C. raciborskii appeared in all our sampling reservoirs which in agreement on what our microscopic observation revealing that HOPE can correctly detect the target cyanobacteria. Furthermore, we were interesting the genetic diversity of C. raciborskii in Taiwan reservoirs, and it was discriminated by two 16S-23S ITS sequences clone libraries of Taihu and Renyi. Phylogenetic analysis revealed that these cloning sequences can be further classified into two distinct types. One was closely related to the strains isolated from European continent (EU type), while the other designated as TW type was separated from any identified strains so far. The relative abundance of these two types C. rabiborskii was further determined by HOPE. In this study, we report that the TW type is dominant in reservoir Taihu whereas the TW type and the EU type are present evenly in reservoir Renyi. The relative abundance of these two types specific C. rabiborskii detected by HOPE is in great agreement with the results analyzed by qPCR, revealing that HOPE can be rapidly and specifically determined the relative abundance of organismal compositions in a cyanobacteria community.

    摘要 I Abstract II 誌謝 III LIST OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII 1.0 Introduction 1 1.1 Study rationale 1 1.2 Aims in this study 1 1.3 Work flow of this study 2 2.0 Literature Review 3 2-1 An overview of cyanobacteria 3 2.2 Cylindrospermopsis raciborskii 4 2-2-1 Ecology of Cylidrospermopsis raciborskii 4 2-2-2 Distribution of Cylindrospermopsis raciborskii 5 2-2-3 Toxins production by Cylindrospermopsis raciborskii 6 2.3 Other cyanobacterial toxins 6 2.4 Cyanobacteria identification 7 2-4-1 By morphology 7 2-4-2 By molecular methods: PCR, DGGE, T-RFLP, qPCR and DNA chip 8 2.5 Cyno-toxins identification 10 2-5-1 Immunological methods: ELISA and mouse assay 10 2-5-2 Chemical methods: HPLC and mass spectrometry 10 2.6 A new molecular technique for cyanobacteria community research 10 3.0 Materials and Methods 20 3-1 Pure cyanobacteria strains, environmental samples and cultivation 20 3-2 DNA extraction 20 3-3 PCR amplification 21 3-4 Cloning and sequencing 21 3-5 Primer design 21 3-6 HOPE reaction 21 3-7 Capillary electrophoresis 22 3-8 Internal concentration standard 22 3-9 Relative abundance of HOPE products and CF values 22 3-9-1 Concentration 22 3-9-2 Peak area 23 3-10 Preparing stringency concentration samples for HOPE 23 3-11 qPCR 24 4.0 Results 26 4-1 Analysis of 16S-23S internally transcribed spacer (ITS) sequences of Cylindrospermopsis raciborskii in reservoirs Renyi and Taihu 26 4-1-1 Clone libraries 26 4-1-2 Phylogenetic analysis 26 4-2 Relative abundance of different Cylindrospermopsis raciborskii types in reservoirs Renyi and Taihu as analyzed by HOPE 27 4-2-1 Primer design for HOPE 27 4-2-2 Specificities of primers for study the different Cylindrospermopsis raciborskii types 28 4-2-3 Using concentrations and peak areas for CFs and relative abundance calculation 28 4-2-4 Relative abundance of different Cylindrospermopsis raciborskii types 29 4-2-5 Validation of HOPE data by qPCR 29 4-2-6 Construction of different concentrations of EU and TW types mixing populations for HOPE detection 30 4-3 Relative abundance of five groups of cyanobacteria in the seven reservoirs as analyzed by HOPE 31 4-3-1 PCR amplification 31 4-3-2 Group specific primers extension 31 4-3-3 Relative abundance of five group cyanobacteria 31 5.0 Discussion 43 6.0 Conclusions and Suggestion 47 6-1 Conclusions 47 6-2 Suggestion 47 7.0 References 48

    Allen, M.M. Simple conditions for growth of unicellular blue-green algae on plates. . J. Phycol. 4: 1-4.(1968)
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. Basic local alignment search tool. J Mol Biol 215: 403-410.(1990)
    Amann, R.I., Ludwig, W., and Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169.(1995)
    Backer, L.C. Cyanobacterial harmful algal blooms (cyanoHABs): Developing a public health response. Lake and Reservoir Management 18: 20-31.(2002)
    Baker, J.A., Entsch, B., Neilan, B.A., and McKay, D.B. Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl Environ Microbiol 68: 6070-6076.(2002)
    Baptista, M.S., and Vasconcelos, M.T. Cyanobacteria Metal Interactions: Requirements, Toxicity, and Ecological Implications. Critical Reviews in Microbiology 32: 127 - 137.(2006)
    Bertilsson, S., Eiler, A., Nordqvist, A., and Jorgensen, N.O. Links between bacterial production, amino-acid utilization and community composition in productive lakes. Isme J 1: 532-544.(2007)
    Bolch, C.J.S., Blackburn, S.I., Jones, G.J., Orr, P.T. & Grewe, P.M. Plasmid content and distribution in the toxic cyanobacterial genus Microcystis Kutzing ex Lemmermann (Cyanobacteria:Chroococcales). Phycologia 36: 6-11.(1997)
    Bostrom, K.H., Riemann, L., Kuhl, M., and Hagstrom, A. Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. Environ Microbiol 9: 152-164.(2007)
    Bourke, A., Hawes, R., Neilson, A., and ND, S. An outbreak of hepato-enteritis (The Palm Island mystery disease) possibly caused by algal intoxication. Toxicon 3: 45-48.(1983)
    Boutte, C., Grubisic, S., Balthasart, P., and Wilmotte, A. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J Microbiol Methods 65: 542-550.(2006)
    Briand, J.-F., C. Leboulanger, J.-F. Humbert, and C. Bernard, and P. Dufour. Cylindrospermopsis Raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming? Journal of Phycology 40: 231-238.(2004)
    Burns, B.P., Saker, M.L., Moffitt, M.C., and Neilan, B.A. Molecular detection of genes responsible for cyanobacterial toxin production in the genera Microcystis, Nodularia, and Cylindrospermopsis. Methods Mol Biol 268: 213-222.(2004)
    Byth, S. Palm Island mystery disease. Med J Aust 2: 40, 42.(1980)
    Castiglioni, B., Rizzi, E., Frosini, A., Sivonen, K., Rajaniemi, P., Rantala, A. et al. Development of a universal microarray based on the ligation detection reaction and 16S rrna gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70: 7161-7172.(2004)
    Chonudomkul, D., Yongmanitchai, W., Theeragool, G., Kawachi, M., Kasai, F., Kaya, K., Watanabe, M. M. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan. FEMS Microbiology Ecology 48: 345-355 (2004)
    Chorus, I., Falconer, I.R., Salas, H.J., and Bartram, J. Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Environ Health B Crit Rev 3: 323-347.(2000)
    Claire Lepere, A.W.a.B.M. Molecular Diversity of Microcystis Strains (Cyanophyceae, Chroococcales) Based on 16S rDNA Sequences. Systematics and Geography of Plants 70: 275-283.(2000)
    Codd, G.A., Morrison, L.F., and Metcalf, J.S. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203: 264-272.(2005)
    Cox, P.A., Banack, S.A., Murch, S.J., Rasmussen, U., Tien, G., Bidigare, R.R. et al. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci U S A 102: 5074-5078.(2005)
    Fastner, J., Rucker, J., Stuken, A., Preussel, K., Nixdorf, B., Chorus, I. et al. Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol 22: 26-32.(2007)
    Fergusson, K.M., and Saint, C.P. Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environ Toxicol 18: 120-125.(2003)
    Fiore, M.F., Moon, D.H., Tsai, S.M., Lee, H., and Trevors, J.T. Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 39: 159-169.(2000)
    Funari, E., and Testai, E. Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38: 97-125.(2008)
    Furukawa, K., Noda, N., Tsuneda, S., Saito, T., Itayama, T., and Inamori, Y. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. J Biosci Bioeng 102: 90-96.(2006)
    Gugger, M., Molica, R., Le Berre, B., Dufour, P., Bernard, C., and Humbert, J.F. Genetic diversity of Cylindrospermopsis strains (cyanobacteria) isolated from four continents. Appl Environ Microbiol 71: 1097-1100.(2005)
    Haider, S., Naithani, V., Viswanathan, P.N., and Kakkar, P. Cyanobacterial toxins: a growing environmental concern. Chemosphere 52: 1-21.(2003)
    Hawkins, P.R., Runnegar, M.T., Jackson, A.R., and Falconer, I.R. Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50: 1292-1295.(1985)
    Hisbergues, M., Christiansen, G., Rouhiainen, L., Sivonen, K., and Borner, T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180: 402-410.(2003)
    Hong, P.Y., Wu, J.H., and Liu, W.T. Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. Appl Environ Microbiol 74: 2882-2893.(2008)
    Hotto, A.M., Satchwell, M.F., and Boyer, G.L. Molecular characterization of potential microcystin-producing cyanobacteria in Lake Ontario embayments and nearshore waters. Appl Environ Microbiol 73: 4570-4578.(2007)
    Hullar, M.A., Kaplan, L.A., and Stahl, D.A. Recurring seasonal dynamics of microbial communities in stream habitats. Appl Environ Microbiol 72: 713-722.(2006)
    Jung, R., Soondrum, K., and Neumaier, M. Quantitative PCR. Clin Chem Lab Med 38: 833-836.(2000)
    Kellmann, R., Mills, T., and Neilan, B.A. Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes. J Mol Evol 62: 267-280.(2006)
    Kim, J.B., Moon, M.S., Lee, D.H., Lee, S.T., Bazzicalupo, M., and Kim, C.K. Comparative analysis of cyanobacterial communities from polluted reservoirs in Korea. J Microbiol 42: 181-187.(2004)
    Kim, S.G., Rhee, S.K., Ahn, C.Y., Ko, S.R., Choi, G.G., Bae, J.W. et al. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl Environ Microbiol 72: 3252-3258.(2006)
    Kondo, F. Total analysis system for tumor promoter microcystins produced by cyanobacteria]. Yakugaku Zasshi 120: 159-169.(2000)
    Kononen, K. Eutrophication, harmful algal blooms and species diversity in phytoplankton communities: examples from the Baltic Sea. Ambio 30: 184-189.(2001)
    Koskenniemi, K., Lyra, C., Rajaniemi-Wacklin, P., Jokela, J., and Sivonen, K. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73: 2173-2179.(2007)
    Laamanen, M.J., Gugger, M.F., Lehtimaki, J.M., Haukka, K., and Sivonen, K. Diversity of toxic and nontoxic nodularia isolates (cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol 67: 4638-4647.(2001)
    Lagos, N., Onodera, H., Zagatto, P.A., Andrinolo, D., Azevedo, S.M., and Oshima, Y. The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37: 1359-1373.(1999)
    Lane, D.J. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow. Nucleic acids technoques in bacterial systematics. Jone Wiley & Sons, Inc., New York, NY.(1991)
    Lepere, C., Wilmotte, A., and Meyer, B. molecular diversity of microcystis strains (cyanophyceae, chroococcales) based on 16S rDNA sequences. Systematics and Geography of Plants 70: 275-283.(2000)
    Llewellyn, L.E. Saxitoxin, a toxic marine natural product that targets a multitude of receptors Nat. Prod. Rep 23: 200-222.(2006)
    Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar et al. ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.(2004)
    Lyra, C., Laamanen, M., Lehtimaki, J.M., Surakka, A., and Sivonen, K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol 55: 555-568.(2005)
    Marsh, T.L. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2: 323-327.(1999)
    McGregor, G.B., and Fabbro, L.D. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: Implications for monitoring and management . Lakes & Reservoirs: Research and Management 5: 195-205.(2000)
    Metcalf, J.S., Reilly, M. and Codd, G.A. Early warning of toxic cyanobacterial blooms. The Phycologist 66: 21.(2004)
    Mihali, T.K., Kellmann, R., Muenchhoff, J., Barrow, K.D., and Neilan, B.A. Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74: 716-722.(2008)
    Moffitt, M.C., and Neilan, B.A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70: 6353-6362.(2004)
    Moffitt, M.C., Blackburn, S.I., and Neilan, B.A. rRNA sequences reflect the ecophysiology and define the toxic cyanobacteria of the genus Nodularia. Int J Syst Evol Microbiol 51: 505-512.(2001)
    Msagati, T.A., Siame, B.A., and Shushu, D.D. Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat Toxicol 78: 382-397.(2006)
    Muhling, M., Woolven-Allen, J., Murrell, J.C., and Joint, I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. Isme J 2: 379-392.(2008)
    Muyzer, G., and Smalla, K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73: 127-141.(1998)
    Neilan, B.A., Jacobs, D., and Goodman, A.E. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61: 3875-3883.(1995)
    Neilan, B.A., Saker, M.L., Fastner, J., Torokne, A., and Burns, B.P. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol Ecol 12: 133-140.(2003)
    Neumann, C., Bain, P., and Shaw, G. Studies of the comparative in vitro toxicology of the cyanobacterial metabolite deoxycylindrospermopsin. J Toxicol Environ Health A 70: 1679-1686.(2007)
    Nicholas J. T. Osborne, P.M.W.a.G.R.S. The toxins of Lyngbya majuscula and their human and ecological health effects Environ Int 27: 381-392.(2001)
    Nubel, U., Garcia-Pichel, F., and Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63: 3327-3332.(1997)
    Ohtani, I., and Moore, R.E. Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. Journal of the American Chemical Society 114: 7941-7942.(1992)
    Otsuka, S., Suda, S., Li, R., Watanabe, M., Oyaizu, H., Matsumoto, S., and Watanabe, M.M. Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172: 15-21.(1999)
    Padisak, J., and Istvanovics, V. Differential response of blue-green algal groups to phosphorus load reduction in a large shallow lake: Balaton, Hungary. Verhandlungen - Internationale Vereinigung für theoretische und angewandte Limnologie 26: 574-580.(1997)
    Paerl, H.W., Fulton, R.S., 3rd, Moisander, P.H., and Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. ScientificWorldJournal 1: 76-113.(2001)
    Pidisak, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. Suppl. 107: 563-593.(1997)
    Pilotto, L., Hobson, P., Burch, M.D., Ranmuthugala, G., Attewell, R., and Weightman, W. Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health 28: 220-224.(2004)
    Preussel, K., Stuken, A., Wiedner, C., Chorus, I., and Fastner, J. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47: 156-162.(2006)
    Rantala, A., Rizzi, E., Castiglioni, B., de Bellis, G., and Sivonen, K. Identification of hepatotoxin-producing cyanobacteria by DNA-chip. Environ Microbiol 10: 653-664.(2008)
    Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepisto, L., Rintala, J., Mankiewicz-Boczek, J., and Sivonen, K. Detection of microcystin-producing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl Environ Microbiol 72: 6101-6110.(2006)
    Rasmussen, J.P., Giglio, S., Monis, P.T., Campbell, R.J., and Saint, C.P. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. J Appl Microbiol.(2007)
    Robertson, B.R., Tezuka, N., and Watanabe, M.M. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51: 861-871.(2001)
    Rodrigue, D.C., Etzel, R.A., Hall, S., de Porras, E., Velasquez, O.H., Tauxe, R.V. et al. Lethal paralytic shellfish poisoning in Guatemala. Am J Trop Med Hyg 42: 267-271.(1990)
    Roeselers, G., Stal, L.J., van Loosdrecht, M.C., and Muyzer, G. Development of a PCR for the detection and identification of cyanobacterial nifD genes. J Microbiol Methods 70: 550-556.(2007)
    Saker, M.L., and Griffiths, D.J. Occurrence of blooms of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju in a north Queensland domestic water supply. Mar. Freshwater Res. 52: 907-915.(2001)
    Saker, M.L., and Neilan, B.A. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (nostocales, cyanophyceae) from Northern Australia. Appl Environ Microbiol 67: 1839-1845.(2001)
    Saker, M.L., Welker, M., and Vasconcelos, V.M. Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl Microbiol Biotechnol 73: 1136-1142.(2007)
    Sangolkar, L.N., Maske, S.S., and Chakrabarti, T. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. Water Res 40: 3485-3496.(2006)
    Sheng, J.W., He, M., Shi, H.C., and Qian, Y. A comprehensive immunoassay for the detection of microcystins in waters based on polyclonal antibodies. Anal Chim Acta 572: 309-315.(2006)
    Shi, T., and Falkowski, P.G. Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci U S A 105: 2510-2515.(2008)
    Smith, M.J., Shaw, G.R., Eaglesham, G.K., Ho, L., and Brookes, J.D. Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources. Environ Toxicol.(2008)
    Spoof, L., Berg, K.A., Rapala, J., Lahti, K., Lepisto, L., Metcalf, J.S. et al. First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21: 552-560.(2006)
    Svrcek, C., and Smith, D.W. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. Journal of Environmental Engineering & Science 3: 155-185.(2004)
    Tillett, D., Dittmann, E., Erhard, M., von Dohren, H., Borner, T., and Neilan, B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7: 753-764.(2000)
    Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L., and Sivonen, K. Quantitative real-time PCR for determination of microcystin synthetase e copy numbers for microcystis and anabaena in lakes. Appl Environ Microbiol 69: 7289-7297.(2003)
    Wiedner, C., and Nixdorf., B. Verbreitung und Steuerung der Entwicklung von toxischen und nicht-toxischen Cyanobakterien in ostbrandenburgischen Gewässern unterschiedlicher Trophie und Hydrologie im Zuge der reduzierten Belastung. Informationshefte des Instituts für Wasser-, Boden- Lufthygiene in Berlin 4: 17-26.(1997)
    Wilson, K.M., Schembri, M.A., Baker, P.D., and Saint, C.P. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Appl Environ Microbiol 66: 332-338.(2000)
    Wu, J.H., and Liu, W.T. Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. Nucleic Acids Res 35: e82.(2007)
    Yen, H., Lin, T., Tseng, I., Tung, S., and Hsu, M. Correlating 2-MIB and microcystin concentrations with environmental parameters in two reservoirs in South Taiwan. Water Sci Technol 55: 33-41.(2007)
    Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N., and Hiroishi, S. Dynamics of microcystin-producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiol Lett 266: 49-53.(2007)
    Zwart, G., Kamst-van Agterveld, M.P., van der Werff-Staverman, I., Hagen, F., Hoogveld, H.L., and Gons, H.J. Molecular characterization of cyanobacterial diversity in a shallow eutrophic lake. Environ Microbiol 7: 365-377.(2005)

    下載圖示 校內:2013-08-26公開
    校外:2013-08-26公開
    QR CODE