| 研究生: |
張簡君毅 Chang-Chien, Chun-Yi |
|---|---|
| 論文名稱: |
多功能之高分子組成應用於中孔洞氧化矽與中孔洞碳材的合成研究 A Study on the Synthesis of Mesoporous Silica and Carbon by Using Multi-Functional Polymer Composites |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 氧化矽 、中孔洞 、碳材 |
| 外文關鍵詞: | mesoporous, silica, carbon |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
中孔洞材料在現代科技上的許多領域佔有很重要的地位,目前中孔洞材料廣泛地被使用在氣體分離、催化反應、能量儲存等用途上,主要是因為它有高比表面積、大孔洞體積等特性。
本研究之實驗內容分為兩部分:一為探討合成立方孔道(CUBIC)中孔洞材料SBA-16的合成條件如聚合時間、不同PH值等對材料的影響,進而以其當作固體模板以乾式含浸法的方式來拓印出具中孔洞結構的碳材,二為採用雙功能性之中性界面活性劑—酚醛樹酯之混和型高分子做為氧化矽孔洞材料之模板,以簡易合成法合成具介尺度之複合材料,直接經由高溫燒的方式即得到中孔洞氧化矽材料,其比表面積約為500-800 M2G-1; 或經100 OC使酚醛樹脂聚合,之後在氮氣環境中1000 OC高溫碳化後,以氫氟酸水溶液(~5.0WT%)移除氧化矽得到中孔洞碳材,其比表面積大約是700-1900 M2G-1。除外,我們也改選用其他的乳化劑,結合著微乳液化學,以PEO6000-H2O-ETHANOL形成微乳液,在PH=5.0與矽酸鈉水溶液結合,成功地合成具有雙功能性之氧化矽球與碳球。而所合成之中孔洞碳材也具有高表面積、高孔洞性及良好之導電度等特質可以做為觸媒擔體、METAL OXIDE之固體模板與燃料電池電極材料等應用。
Abstract
Mesoporous silicas and carbons have been applied in various areas, including gas separation, water purification, catalyst support, and electrode material for electrochemical devices.
In this thesis, there are two major researching parts. A convenient synthetic of mesoporous carbons and silica is still desired. In the first part, we focused on the synthesis of SBA-16 mesoporous silicas of cubic Im3m structure with Pluronic F127 (EO106PO70EO106) as template. To explore the effects of various reaction factors on the mesostructure orderness of the SBA-16, we adjusted pH value, aging time and hydrothermal treatment in water or mother solution. The mesoporous carbons have been efficiently prepared via a convenient impregnation method using with calcined mesoporous silica materials (SBA-16) as nanotemplates and commercial-grade phenol-formaldehyde resin as carbon source.
In the second part of our studies, we proposed a new method to prepare the mesoporous silicas and carbons by using a polymer blend of neutral polymer and phenol-formaldehyde resin as template. Through a rapid silification, a neutral polymer—PF resin—silica composites was generated. After calcination for removing organics, the mesoporous silicas were obtained with surface areas ( 300—700 m2g-1) and pore sizes ( 2.0—11.0 nm). On the other hand, neutral polymer—PF resin—silica composites can be converted to mesoporous carbons via a consequent processes of polymerization at 100 oC, pyrolysis under N2 atmosphere at 1000 oC and HF-etching . The mesoporous carbons possess the properties of high surface areas ( 700—1900 m2g-1), large pore volume ( 0.3—1.1 cm3g-1). In order to explore the effects of reaction factors on the mesostructured materials, we adjusted pH value, water content, PF resin/neutral polymer ratio and hydrothermal treatment. When physical and chemical properties of mesoporous carbons and silicas can be easily manipulated, exceptional application in adsorbent for large molecules, hard-template of metal oxides, electrode materials of methanol fuel cell, and electrochemical double layers capacitor will be further explored.
參考資料
1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
2.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3.A. Sayari, Chem. Mater., 1996, 8, 1840.
4.R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
5.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39,63.
6.M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
7.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
8.J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
9.C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
10.C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
11.C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
12.(a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
13.S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
14.T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1995, 1617.
15.W. Wang, S. Xie, W. Zhou and A. Sayari. Chem. Mater (2004 )
Received February 11.
16.J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
17.A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
18.A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
19.H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
20.V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
21.H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
22.Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
23.S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
24.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
25. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
26.A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
27.Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. , 2002, 14, 1144.
28.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
29.Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin.J. Phys. Chem. B., 2001, 105, 7963
30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater., 2002, 12, 2448.
31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 , 951.
33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. , 2000, 48, 289.
34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
37.S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
38.N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
39.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 2002, 41, 1543 .
40.T. F. Todros, Surfactants, Academic Press : London, 1984.
41.B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
42.J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
43. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
44. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
45. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey .Chem. Mater., 1994, 6, 1176.
46. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301
47.K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solution, Wiley Press, England, 2002.
48 C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
49 H. C. Foley, J. Microporous Mater. 1995, 4, 407.
50 T. Kyotani, Carbon 2000, 38, 269.
51 J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
52 M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
53 H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
54.T. Kyotani, Carbon 2000, 38, 269.
55. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
56. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
57. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
58. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
59. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
60. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
61. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin,
I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
62. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
63. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
64. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
65. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
66. [70] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
67. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
68. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
69. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
70. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
71. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
72. J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang, and Y. Lu, Adv. Mater. 2004, 16, No. 11, 884.
73. V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, Langmuir 2004, 20, 3785.
74. S. Kuo, C. Lin, and F. Chang, Macromolecules 2002, 35, 278.
75. C. G. Göltner, B. Smarsly, B. Berton, and M. Antonietti, Chem Mater, 2001, 13, 1617.
76. B. P. Binks, A. K. F. Dyab, and P. D. I. Fletcher, Chem. Commun, 2003, 2540.
77. W. Li, X. Sha, W. Dong, and Z. Wang, Chem. Commun. 2002, 2434.
78. J. Roggenbuck, and M. Tiemann, J. Am. Chem. Soc, 2005, 127, 1096.
79. W. Li, A. Lu, C. Weidenthaler, and F. Schth, Chem Mater, 2004, 16, 5676.