簡易檢索 / 詳目顯示

研究生: 張簡君毅
Chang-Chien, Chun-Yi
論文名稱: 多功能之高分子組成應用於中孔洞氧化矽與中孔洞碳材的合成研究
A Study on the Synthesis of Mesoporous Silica and Carbon by Using Multi-Functional Polymer Composites
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 116
中文關鍵詞: 氧化矽中孔洞碳材
外文關鍵詞: mesoporous, silica, carbon
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •        摘要
      中孔洞材料在現代科技上的許多領域佔有很重要的地位,目前中孔洞材料廣泛地被使用在氣體分離、催化反應、能量儲存等用途上,主要是因為它有高比表面積、大孔洞體積等特性。

      本研究之實驗內容分為兩部分:一為探討合成立方孔道(CUBIC)中孔洞材料SBA-16的合成條件如聚合時間、不同PH值等對材料的影響,進而以其當作固體模板以乾式含浸法的方式來拓印出具中孔洞結構的碳材,二為採用雙功能性之中性界面活性劑—酚醛樹酯之混和型高分子做為氧化矽孔洞材料之模板,以簡易合成法合成具介尺度之複合材料,直接經由高溫燒的方式即得到中孔洞氧化矽材料,其比表面積約為500-800 M2G-1; 或經100 OC使酚醛樹脂聚合,之後在氮氣環境中1000 OC高溫碳化後,以氫氟酸水溶液(~5.0WT%)移除氧化矽得到中孔洞碳材,其比表面積大約是700-1900 M2G-1。除外,我們也改選用其他的乳化劑,結合著微乳液化學,以PEO6000-H2O-ETHANOL形成微乳液,在PH=5.0與矽酸鈉水溶液結合,成功地合成具有雙功能性之氧化矽球與碳球。而所合成之中孔洞碳材也具有高表面積、高孔洞性及良好之導電度等特質可以做為觸媒擔體、METAL OXIDE之固體模板與燃料電池電極材料等應用。

    Abstract
     Mesoporous silicas and carbons have been applied in various areas, including gas separation, water purification, catalyst support, and electrode material for electrochemical devices.

     In this thesis, there are two major researching parts. A convenient synthetic of mesoporous carbons and silica is still desired. In the first part, we focused on the synthesis of SBA-16 mesoporous silicas of cubic Im3m structure with Pluronic F127 (EO106PO70EO106) as template. To explore the effects of various reaction factors on the mesostructure orderness of the SBA-16, we adjusted pH value, aging time and hydrothermal treatment in water or mother solution. The mesoporous carbons have been efficiently prepared via a convenient impregnation method using with calcined mesoporous silica materials (SBA-16) as nanotemplates and commercial-grade phenol-formaldehyde resin as carbon source.

     In the second part of our studies, we proposed a new method to prepare the mesoporous silicas and carbons by using a polymer blend of neutral polymer and phenol-formaldehyde resin as template. Through a rapid silification, a neutral polymer—PF resin—silica composites was generated. After calcination for removing organics, the mesoporous silicas were obtained with surface areas ( 300—700 m2g-1) and pore sizes ( 2.0—11.0 nm). On the other hand, neutral polymer—PF resin—silica composites can be converted to mesoporous carbons via a consequent processes of polymerization at 100 oC, pyrolysis under N2 atmosphere at 1000 oC and HF-etching . The mesoporous carbons possess the properties of high surface areas ( 700—1900 m2g-1), large pore volume ( 0.3—1.1 cm3g-1). In order to explore the effects of reaction factors on the mesostructured materials, we adjusted pH value, water content, PF resin/neutral polymer ratio and hydrothermal treatment. When physical and chemical properties of mesoporous carbons and silicas can be easily manipulated, exceptional application in adsorbent for large molecules, hard-template of metal oxides, electrode materials of methanol fuel cell, and electrochemical double layers capacitor will be further explored.

    目錄 第一章 緒論 1 1.1 中孔洞材料介紹 1 1.2 界面活性劑性質簡介 5 1.2.1 界面活性劑的分類 5 1.2.2 微胞的形成 6 1.3 矽酸鹽的基本概念 8 1.4 微乳液 11 1.5 高分子聚合 13 1.5.1 聚摻的方法 14 1.6中孔洞碳材的簡介 15 第二章 實驗部份 20 2.1 化學藥品 20 2.2 樣品的合成方法 21 2.2.1 立方型(SBA16)中孔洞材料合成步驟 21 2.2.2中孔洞材料製備之簡易合成法 22 2.2.2.1 界面活性劑F127 22 2.2.2.2 界面活性劑PEO6000 23 2.2.3 中孔洞碳材合成方法 23 2.3 產物的鑑定 24 2.3.1 熱重分析儀 24 2.3.2 X-射線粉末繞射光譜 24 2.3.4 穿透式電子顯微鏡 25 2.3.5 掃描式電子顯微鏡 25 2.3.6 氮氣等溫吸附/脫附測量 25 2.3.7 固態魔角旋轉核磁共振光譜 28 2.3.8 拉曼光譜 28 第三章 立方(cubic)中孔洞材料SBA-16合成及探討 29 3.1 研究動機及目的 29 3.2 結果與討論 30 3.2.1 SBA-16的合成與鑑定 30 3.2.2 在pH=5.0下不同聚合時間的矽酸鈉之探討 32 3.2.3 pH值對中孔洞材料的影響 35 3.2.4 水熱的影響對中孔洞材料的影響 38 第四章簡易方式合成中孔洞材料 40 4.1 研究動機與目的 40 4.2 實驗設計 41 4.3 結果與討論 43 4.3.1 酚醛樹脂含量對中孔洞氧化矽材料之影響 43 4.3.2 水熱反應的效應 49 4.3.3 改變反應溶液pH值的影響 50 4.4.4 改變合成溫度對材料的影響 57 4.4.5改變矽酸鈉濃度的作用 60 4.4.5.1 相同的矽酸鈉含量,不同的水量 60 4.4.5.2 相同的水量,不同的矽酸鈉含量 62 4.4.6 添加擴孔劑(toluene)對中孔洞材料的影響 66 4.4.7使用其他種類乳化劑合成中孔洞材料 69 4.4.7.1乳化劑PEO6000 69 4.4.8 改變不同的合成方式 79 第五章 中孔洞碳材 85 5.1 研究動機與目的 85 5.2 結果與討論 87 A. 使用中孔洞氧化矽材料做為固體模板 5.2.1 以立方型(SBA-16)堆積孔道作為固體模板 87 5.2.2結晶型中孔洞氧化矽當為固體模板 93 5.2.3其他方式合成之中孔洞碳材 95 B. 以簡易合成法合成中孔洞碳材 5.2.4 酚醛樹脂含量對中孔洞碳材之影響 98 5.2.5pH值對中孔洞碳材之影響 101 5.2.6 改變不同方式所合成之中孔洞碳材 104 5.2.6改變乳化劑對中孔洞碳材之影響 106 5.2.6.1 乳化劑PEO6000 106 第六章 結論 109 參考文獻 111

    參考資料
    1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992,359, 710.
    2.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    3.A. Sayari, Chem. Mater., 1996, 8, 1840.
    4.R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
    5.B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39,63.
    6.M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
    7.A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
    8.J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
    9.C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    10.C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    11.C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
    12.(a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
    (b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
    13.S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
    14.T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1995, 1617.
    15.W. Wang, S. Xie, W. Zhou and A. Sayari. Chem. Mater (2004 )
    Received February 11.
    16.J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
    17.A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
    18.A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
    19.H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
    20.V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
    21.H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
    22.Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
    23.S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
    24.J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
    25. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
    26.A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
    27.Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. , 2002, 14, 1144.
    28.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
    29.Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin.J. Phys. Chem. B., 2001, 105, 7963
    30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey. Chem. Mater., 2002, 12, 2448.
    31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
    32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 , 951.
    33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. , 2000, 48, 289.
    34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
    35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
    36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
    37.S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
    38.N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
    39.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed., 2002, 41, 1543 .
    40.T. F. Todros, Surfactants, Academic Press : London, 1984.
    41.B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    42.J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    43. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264
    44. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
    45. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey .Chem. Mater., 1994, 6, 1176.
    46. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301
    47.K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solution, Wiley Press, England, 2002.
    48 C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    49 H. C. Foley, J. Microporous Mater. 1995, 4, 407.
    50 T. Kyotani, Carbon 2000, 38, 269.
    51 J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun. 1998, 2177.
    52 M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N. Toyota, Synthetic Metals, 2003, 721.
    53 H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater., 2003, 15, 2107
    54.T. Kyotani, Carbon 2000, 38, 269.
    55. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater.,1996, 8, 454.
    56. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
    57. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
    58. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
    59. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146, 3639.
    60. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater., 2000, 12, 3397.
    61. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin,
    I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
    62. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9, 609.
    63. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
    64. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
    65. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
    66. [70] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.; Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    67. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003, 107, 2205.
    68. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
    69. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13, No. 9, 677.
    70. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
    71. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
    72. J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang, and Y. Lu, Adv. Mater. 2004, 16, No. 11, 884.
    73. V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A. Mun, Langmuir 2004, 20, 3785.
    74. S. Kuo, C. Lin, and F. Chang, Macromolecules 2002, 35, 278.
    75. C. G. Göltner, B. Smarsly, B. Berton, and M. Antonietti, Chem Mater, 2001, 13, 1617.
    76. B. P. Binks, A. K. F. Dyab, and P. D. I. Fletcher, Chem. Commun, 2003, 2540.
    77. W. Li, X. Sha, W. Dong, and Z. Wang, Chem. Commun. 2002, 2434.
    78. J. Roggenbuck, and M. Tiemann, J. Am. Chem. Soc, 2005, 127, 1096.
    79. W. Li, A. Lu, C. Weidenthaler, and F. Schth, Chem Mater, 2004, 16, 5676.

    下載圖示 校內:2006-07-25公開
    校外:2006-07-25公開
    QR CODE