簡易檢索 / 詳目顯示

研究生: 徐逸驊
Hsu, Yi-Hua
論文名稱: 平面載具之小型慣性導航系統設計
Small Scale Inertial Navigation System Design of Surface Vehicles
指導教授: 陳永裕
Chen, Yung-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: GPS慣性導航定位系統積分發散Kalman filter
外文關鍵詞: GPS, INS, Divergence of integration, Kalman filter
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球衛星定位系統(GPS,Global Positioning System)已被廣泛運用於各個導航系統,如武器導航、船舶導航和車輛導航等,但GPS訊號容易被建築物和地形地物遮蔽使得導航困難,為了克服此情況,將慣性導航定位系統(INS,Inertial Navigation System)與GPS整合。當GPS定位系統離線時,INS可自主產生定位訊息:角速度及加速度,原則上將它對時間進行一次積分及二次積分可求得於三度空間之速度、姿態角和位置訊息,然而慣性感測元件具有訊號偏移(bias)、及雜訊等特性,經過積分運算之後,其誤差會隨時間增加而不斷累積,載具所能得到的僅只有發散定位資訊。因此本研究提出了一套使用自迴歸滑動平均模型(Autoregressive moving average model, ARMA model)之遞迴最小平方演算法(Recursive Least Square algorithm, RLS algorithm) 來抑制慣性感測元件輸出訊號之積分發散的問題,並藉由對載具於大地運動之慣性行為進行慣性定位進行誤差分析,結合 Kalman filter 技術來抑制慣性元件輸出訊號誤差,達成有效且精確提供載具於飛行、地面運動或海上航行設計時所須之定位及姿態資訊。在本論文中,將有效整合GPS/INS系統並置放於地面載具實測,顯示出慣性感測元件經由校正後能達成較佳的定位效果。

    The Global Positioning System (GPS) is a space-based navigation system that provides location and time information in all weather conditions. The system is widely used in to military, civil, and commercial users around the world. However, GPS signals can be easily obscured by buildings or exceptional terrain. In general, inertial navigation system (INS) is integrated with GPS under the condition of GPS outage. The INS contains the accelerometer and gyroscope to measure the acceleration and angular velocity of the vehicle. However, a common question is the signal divergence of inertial measurement sensors due to the first and double integration process for obtaining the positioning and attitude message of vehicles. Generally speaking, the error divergence of inertial measurement unit (IMU) always comes from the drift rate of baseline of inertial devices and distribution of noise, and causes an unacceptable output. This thesis presents a method combined Autoregressive moving average model (ARMA model) with Recursive Least Square algorithm (RLS) and Kalman filter to suppress the errors of inertial measurement sensor outputs and derive an advanced estimator to eliminate divergence of positioning errors for offering accurate positioning messages to vehicles.

    摘要 i Extended Abstract ii 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 第一章 介紹 1 1.1研究動機 1 1.2文獻回顧 2 1.3論文架構 3 第二章 慣性導航系統架構 4 2.1 慣性導航簡介 4 2.2慣性導航系統分類 4 2.3 座標系統 6 2.3.1地心固座標(Earth-frame) 7 2.3.2自體座標(Body-frame) 7 2.3.3導航座標(Navigation-frame) 7 2.4座標轉換 8 2.4.1四元素法(Quaternion) 8 2.5 GPS/INS整合架構 11 2.5.1鬆耦合式架構(Loosely Coupled, LC) 12 2.5.2緊耦合式架構(Tightly Coupled, TC) 13 2.6 導航系統之數學模型 14 第三章 慣性元件誤差抑制 17 3.1前言 17 3.2基準值誤差補償 18 3.3陀螺儀量測值積分的誤差抑制 21 3.3.1陀螺儀量測校正儀器 22 3.3.2自迴歸滑動平均模型 23 3.3.3遞迴最小平方演算法 24 3.3.4陀螺儀量測值積分之RLS估測 26 3.4加速度計量測值積分的誤差抑制 31 3.4.1加速度計量測校正儀器 31 3.4.2加速度計量測值積分的誤差抑制 32 3.5 GPS/INS與 Kalmam Filter 整合 37 第四章 小型慣性導航模組實測結果與討論 43 4.1前言 43 4.2小型導航模組實驗設備 43 4.2.1導航模組韌體程式動作流程 46 4.3車載平台測試結果 47 4.3.1車載平台實測一 48 4.3.2車載平台實測二 51 4.4車載平台實測結果 54 第五章 結論 55 參考文獻 56 附錄 59

    [1] H. T. David and L. W. John, Strapdown Inertial Navigation Technology, 2nd ed. Baker & Taylor Books, 2004.
    [2] 鄧正隆, 慣性技術, 哈爾濱工業大學出版社, 2011.
    [3] 黃國興, 慣性導航系統原理與應用, 全華科技圖股份有限公司, 1996.
    [4] S. L. Lu, L. Xie, and J. B. Chen, “New techniques for initial alignment of strapdown inertial navigation system, ” J. Franklin Inst., Vol. 346, No. 10, pp. 1021-1037, Dec. 2009.
    [5] Y. F. Jiang, “Error analysis of analytic coarse alignment methods,” IEEE Tran. Aerosp. Electron. Systems, Vol. 34, No. 1, pp. 334-337, Jan. 1998.
    [6] D. Chung, J. G. Lee, and C. G. Park, “Strapdown INS error model for multiposition alignment,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 4, pp. 1362-1366, Oct. 1996.
    [7] M. J. Yu, “Comparison of SDINS In-Flight alignment using equivalent error models”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, pp. 1046-1054, July 1999.
    [8] Y. F. Jiang, “Error Estimation of INS Ground alignment through observability analysis”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1 pp. 92-97, Jan. 1992.
    [9] J. L. Li, J. C. Fang, and M. Du, “Error analysis and gyro-bias calibrationof analytic coarse alignment for airborne POS”, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, pp. 3058-3064, 2012.
    [10] S. Hong, M. Lee, H. Chun, S. Kwon, and J. Speyer, “Observability of error states in GPS/INS integration,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 2, pp. 731-743, Mar. 2005.
    [11] Y. Wu and X. Pan, “Velocity/position integration formula part II: Application to strapdown inertial navigation computation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, pp. 1024-1034, Apr. 2013.
    [12] C. Jahanchahi, and D. P. Mandic “A class of quaternion Kalman filters,’’ IEEE Transactions on Neural NETWORKS AND Learning Systems, Vol. 25, No. 3, pp. 533-544, Mar. 2014.
    [13] D.Choukroun, I. Y. Bar-Tzhack, and Y. Oshman, “Novel quaternion Kalman filter,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, pp. 174-190, Jan. 2006.
    [14] K. H. Kim, J. G. Lee, and C. G. Park, “Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 1, pp. 125-137, Jan. 2009.
    [15] A. K. Brown. (2005. Oct. 3). GPS/INS uses low-cost MEMS IMU. IEEE A&E Systems, Mag. pp. 3-10.
    [16] G. A. Einicke, G. Falco, and J. T. Malos, “Bounded constrained filtering for GPS/INS integration,’’ IEEE Transactions on Automatic Control, Vol. 58, No. 1, pp. 125-133, Jan. 2013.
    [17] D. Huang and H. Leung, “Expectation maximization based GPS/INS integration for Land-Vehicle navigation,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, pp. 1168-1177, July 2007.
    [18] Y. Yang and J. A. Farrell, “Two antennas GPS-aided INS for attitude determination,’’ IEEE Transactions on Control Systems Technology, Vol. 11, No. 6, Nov. 2003.
    [19] A. Soloviev, “Tight coupling of GPS, INS, and laser for urban navigation,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, pp. 1731-1746, Oct. 2010.
    [20] J. A. Farrell, T. D. Givargis, and M. J. Barth, “Real-time differential carrier phase GPS-aided INS,’’ IEEE Transactions on Control Systems Technology, Vol. 8, No. 4, pp. 709-721, July 2000.
    [21] Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Measurement Science and Technology, Vol. 18, No. 7, pp. 1897-1907, 2007.
    [22] S. P. KARATSINIDES, “Enhancing fiIter robustness in cascaded CPS-INS integrations,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, pp. 1001-1008, Oct. 1994.
    [23] K. Kim, Y. Sun, R. M. Voyles, and B. J. Nelson, “Calibration of multiaxis mems force sensors using the shape-from-motion method,” IEEE Sensors Journal, Vol. 7, No. 3, pp. 344-350, 2007.
    [24] Y. Tang, Y. Wu, M. Wu, W. Wu, X. Hu, and L. Shen, “INS/GPS integration: global observability analysis,” IEEE Transactions on Vehicular Technology, Vol. 58, No. 3, pp. 1129-1142, Mar. 2009.
    [25] O. Nelles, Nonlinear System Identification: from Classical Approaches to Neural Networks and Fuzzy Models Springer, 2001.

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE