| 研究生: |
徐逸驊 Hsu, Yi-Hua |
|---|---|
| 論文名稱: |
平面載具之小型慣性導航系統設計 Small Scale Inertial Navigation System Design of Surface Vehicles |
| 指導教授: |
陳永裕
Chen, Yung-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | GPS 、慣性導航定位系統 、積分發散 、Kalman filter |
| 外文關鍵詞: | GPS, INS, Divergence of integration, Kalman filter |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全球衛星定位系統(GPS,Global Positioning System)已被廣泛運用於各個導航系統,如武器導航、船舶導航和車輛導航等,但GPS訊號容易被建築物和地形地物遮蔽使得導航困難,為了克服此情況,將慣性導航定位系統(INS,Inertial Navigation System)與GPS整合。當GPS定位系統離線時,INS可自主產生定位訊息:角速度及加速度,原則上將它對時間進行一次積分及二次積分可求得於三度空間之速度、姿態角和位置訊息,然而慣性感測元件具有訊號偏移(bias)、及雜訊等特性,經過積分運算之後,其誤差會隨時間增加而不斷累積,載具所能得到的僅只有發散定位資訊。因此本研究提出了一套使用自迴歸滑動平均模型(Autoregressive moving average model, ARMA model)之遞迴最小平方演算法(Recursive Least Square algorithm, RLS algorithm) 來抑制慣性感測元件輸出訊號之積分發散的問題,並藉由對載具於大地運動之慣性行為進行慣性定位進行誤差分析,結合 Kalman filter 技術來抑制慣性元件輸出訊號誤差,達成有效且精確提供載具於飛行、地面運動或海上航行設計時所須之定位及姿態資訊。在本論文中,將有效整合GPS/INS系統並置放於地面載具實測,顯示出慣性感測元件經由校正後能達成較佳的定位效果。
The Global Positioning System (GPS) is a space-based navigation system that provides location and time information in all weather conditions. The system is widely used in to military, civil, and commercial users around the world. However, GPS signals can be easily obscured by buildings or exceptional terrain. In general, inertial navigation system (INS) is integrated with GPS under the condition of GPS outage. The INS contains the accelerometer and gyroscope to measure the acceleration and angular velocity of the vehicle. However, a common question is the signal divergence of inertial measurement sensors due to the first and double integration process for obtaining the positioning and attitude message of vehicles. Generally speaking, the error divergence of inertial measurement unit (IMU) always comes from the drift rate of baseline of inertial devices and distribution of noise, and causes an unacceptable output. This thesis presents a method combined Autoregressive moving average model (ARMA model) with Recursive Least Square algorithm (RLS) and Kalman filter to suppress the errors of inertial measurement sensor outputs and derive an advanced estimator to eliminate divergence of positioning errors for offering accurate positioning messages to vehicles.
[1] H. T. David and L. W. John, Strapdown Inertial Navigation Technology, 2nd ed. Baker & Taylor Books, 2004.
[2] 鄧正隆, 慣性技術, 哈爾濱工業大學出版社, 2011.
[3] 黃國興, 慣性導航系統原理與應用, 全華科技圖股份有限公司, 1996.
[4] S. L. Lu, L. Xie, and J. B. Chen, “New techniques for initial alignment of strapdown inertial navigation system, ” J. Franklin Inst., Vol. 346, No. 10, pp. 1021-1037, Dec. 2009.
[5] Y. F. Jiang, “Error analysis of analytic coarse alignment methods,” IEEE Tran. Aerosp. Electron. Systems, Vol. 34, No. 1, pp. 334-337, Jan. 1998.
[6] D. Chung, J. G. Lee, and C. G. Park, “Strapdown INS error model for multiposition alignment,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 4, pp. 1362-1366, Oct. 1996.
[7] M. J. Yu, “Comparison of SDINS In-Flight alignment using equivalent error models”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, pp. 1046-1054, July 1999.
[8] Y. F. Jiang, “Error Estimation of INS Ground alignment through observability analysis”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1 pp. 92-97, Jan. 1992.
[9] J. L. Li, J. C. Fang, and M. Du, “Error analysis and gyro-bias calibrationof analytic coarse alignment for airborne POS”, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 11, pp. 3058-3064, 2012.
[10] S. Hong, M. Lee, H. Chun, S. Kwon, and J. Speyer, “Observability of error states in GPS/INS integration,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 2, pp. 731-743, Mar. 2005.
[11] Y. Wu and X. Pan, “Velocity/position integration formula part II: Application to strapdown inertial navigation computation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, pp. 1024-1034, Apr. 2013.
[12] C. Jahanchahi, and D. P. Mandic “A class of quaternion Kalman filters,’’ IEEE Transactions on Neural NETWORKS AND Learning Systems, Vol. 25, No. 3, pp. 533-544, Mar. 2014.
[13] D.Choukroun, I. Y. Bar-Tzhack, and Y. Oshman, “Novel quaternion Kalman filter,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, pp. 174-190, Jan. 2006.
[14] K. H. Kim, J. G. Lee, and C. G. Park, “Adaptive two-stage extended Kalman filter for a fault-tolerant INS-GPS loosely coupled system,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 1, pp. 125-137, Jan. 2009.
[15] A. K. Brown. (2005. Oct. 3). GPS/INS uses low-cost MEMS IMU. IEEE A&E Systems, Mag. pp. 3-10.
[16] G. A. Einicke, G. Falco, and J. T. Malos, “Bounded constrained filtering for GPS/INS integration,’’ IEEE Transactions on Automatic Control, Vol. 58, No. 1, pp. 125-133, Jan. 2013.
[17] D. Huang and H. Leung, “Expectation maximization based GPS/INS integration for Land-Vehicle navigation,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, pp. 1168-1177, July 2007.
[18] Y. Yang and J. A. Farrell, “Two antennas GPS-aided INS for attitude determination,’’ IEEE Transactions on Control Systems Technology, Vol. 11, No. 6, Nov. 2003.
[19] A. Soloviev, “Tight coupling of GPS, INS, and laser for urban navigation,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, pp. 1731-1746, Oct. 2010.
[20] J. A. Farrell, T. D. Givargis, and M. J. Barth, “Real-time differential carrier phase GPS-aided INS,’’ IEEE Transactions on Control Systems Technology, Vol. 8, No. 4, pp. 709-721, July 2000.
[21] Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Measurement Science and Technology, Vol. 18, No. 7, pp. 1897-1907, 2007.
[22] S. P. KARATSINIDES, “Enhancing fiIter robustness in cascaded CPS-INS integrations,’’ IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, pp. 1001-1008, Oct. 1994.
[23] K. Kim, Y. Sun, R. M. Voyles, and B. J. Nelson, “Calibration of multiaxis mems force sensors using the shape-from-motion method,” IEEE Sensors Journal, Vol. 7, No. 3, pp. 344-350, 2007.
[24] Y. Tang, Y. Wu, M. Wu, W. Wu, X. Hu, and L. Shen, “INS/GPS integration: global observability analysis,” IEEE Transactions on Vehicular Technology, Vol. 58, No. 3, pp. 1129-1142, Mar. 2009.
[25] O. Nelles, Nonlinear System Identification: from Classical Approaches to Neural Networks and Fuzzy Models Springer, 2001.
校內:2021-09-01公開