簡易檢索 / 詳目顯示

研究生: 蕭博文
Hsiao, Po-Wen
論文名稱: 表面處理對牙科複合樹脂-鈦鍵結行為之影響
Effect of surface treatment on dental composite-titanium bonding behavior
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 113
中文關鍵詞: 複合樹脂鍵結
外文關鍵詞: titanium, composite, bonding
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦與鈦合金由於具有高強度、質輕、優良的抗腐蝕性及生物相容性等優點,近年來在牙科方面已廣泛的研究並臨床應用於人體中。但由於鈦的高溫氧化性相當強烈,因此在表面燒瓷過程中,鈦的表面會因為生成的氧化膜過厚而容易脫落,使得鈦金屬在燒瓷的技術方面面臨許多問題。
    本實驗利用複合樹脂被覆於純鈦上以取代陶瓷做為復型材,以克服鈦做基底金屬時所面臨被覆陶瓷容易脫落的問題,並藉由製程上的改變縮短聚合複合樹脂所需之時間,另外在鈦基材上做不同表面處理以求提高複合樹脂與鈦基材之鍵結強度。

    Because of their high strength, low density, good corrosion resistance and excellent biocompatibility, pure titanium and titanium alloy have been widely investigated in dental materials and applied in human clinically in recent years. However due to oxidation problem in high temperature, it is difficult to get good bond strength between titanium and ceramic.
    In my experiment, I use composite to replace ceramic on pure titanium, and it can overcome the scaling off of the porcelain coating on pure titanium. Furthermore, I change the way of curing composite coating on titanium to shorten the curing time, and I also do some surface treatment on pure titanium in order to promote the bond strength between composite and pure titanium.

    中文摘要 ……………………………………………………………… Ⅰ Abstract ……………………………………………………………… Ⅱ 致謝 ……………………………………………………………… Ⅲ 總目錄 ……………………………………………………………… Ⅳ 圖目錄 ……………………………………………………………… Ⅷ 表目錄 ……………………………………………………………… XII 第一章 前言………………………………………………………… 1 1-1 復形材料發展簡介………………………………………… 1 1-2 基底金屬發展簡介………………………………………… 1 1-3 被覆材料發展簡介………………………………………… 7 1-4 研究目的…………………………………………………… 9 第二章 文獻回顧…………………………………………………… 11 2-1 純鈦的基本性質…………………………………………… 11 2-2 牙科陶瓷的基本性質……………………………………… 17 2-3 牙科陶瓷應用於鈦上的問題……………………………… 18 2-4 複合樹脂的基本性質……………………………………… 23 第三章 理論基礎…………………………………………………… 30 3-1 鍵結的形成………………………………………………… 30 3-1-1 化學鍵結…………………………………………………… 33 3-1-2 機械鍵結…………………………………………………… 36 3-2 矽烷耦合劑的偶合原理…………………………………… 36 3-2-1 耦合劑與無機材界面之化學作用………………………… 37 3-2-2 耦合劑與有機材界面之化學作用………………………… 37 3-3 多孔性氧化鈦膜…………………………………………… 41 3-3-1 多孔性氧化鈦的形態……………………………………… 43 3-3-2 多孔性氧化鈦的形成機制………………………………… 44 3-3-3 多孔性氧化鈦孔洞的成核及成長………………………… 46 第四章 實驗步驟…………………………………………………… 49 4-1 實驗流程…………………………………………………… 49 4-2 鈦基材取得………………………………………………… 49 4-3 複合樹脂的選用…………………………………………… 49 4-4 聚合方式的改變…………………………………………… 51 4-4-1 複合樹脂塗佈及聚合過程………………………………… 51 4-5 不同表面處理……………………………………………… 55 4-5-1 處理A ……………………………………………………… 55 4-5-2 處理B ……………………………………………………… 55 4-5-3 處理C ……………………………………………………… 56 4-5-4 處理A+B …………………………………………………… 56 4-5-5 處理A+C …………………………………………………… 56 4-6 冷熱循環測試……………………………………………… 57 4-7 實驗結果評估……………………………………………… 58 4-7-1 鍵結強度測試……………………………………………… 58 4-7-2 表面粗糙度量測…………………………………………… 59 4-7-3 微硬度測驗………………………………………………… 61 4-7-4 破裂處OM觀察……………………………………………… 61 4-7-5 表面SEM觀察 ……………………………………………… 62 4-7-6 X光光電子能譜化學鍵結分析 …………………………… 62 4-7-7 潤濕性測試………………………………………………… 63 4-7-8 殘留opaque比例…………………………………………… 63 第五章 實驗結果與討論…………………………………………… 65 5-1 聚合時間對複合樹脂的影響……………………………… 65 5-2 聚合槍輸出功率對複合樹脂的影響……………………… 72 5-3 破裂行為的研究…………………………………………… 76 5-4 不同表面處理……………………………………………… 78 5-5 冷熱循環測試……………………………………………… 97 第六章 結論………………………………………………………… 103 第七章 參考文獻…………………………………………………… 104 圖目錄 圖2-1-1 鈦晶體結構圖………………………………………………… 13 圖2-1-2 各種生醫材料的應力-應變圖 ……………………………… 15 圖2-3-1 牙科陶瓷與純鈦的破裂模式示意圖………………………… 22 圖2-4-1 Bis-GMA分子結構式 ………………………………………… 25 圖2-4-2 胺基甲酸乙酯二甲基丙烯酸甲酯分子結構式……………… 25 圖2-4-3 矽烷耦合劑分子結構式……………………………………… 28 圖3-1-1 鍵結形成示意圖……………………………………………… 30 圖3-1-2 SR Link形成化學鍵結的方式……………………………… 35 圖3-2-1 耦合劑形成之矽醇在與無機物表面之羥基反應…………… 39 圖3-2-2 耦合劑與樹脂形成鍵結之反應……………………………… 39 圖3-2-2 矽烷耦合劑在無機材上進行水解和縮合反應的整體示意圖 …………………………………………………………………………… 40 圖3-3-1 多孔性氧化鈦形態…………………………………………… 43 圖3-3-2 多孔性氧化鈦示意圖………………………………………… 44 圖3-3-3 氧化鈦膜成長示意圖………………………………………… 45 圖3-3-4 多孔性氧化鈦孔洞的成核及成長示意圖…………………… 47 圖4-1-1 實驗流程……………………………………………………… 50 圖4-4-1 Adoro使用之儀器 …………………………………………… 52 圖4-4-2 Adoro所用儀器之升溫圖 …………………………………… 53 圖4-6-1 冷熱循環示意圖……………………………………………… 57 圖4-7-1 根據ISO9693所規範三點彎曲試驗示意圖 ………………… 60 圖4-7-2 Fe-sem………………………………………………………… 64 圖5-1-1 複合樹脂和處理A的鈦基材在不同聚合時間下的鍵結強度 …………………………………………………………………………… 66 圖5-1-2 不同複合樹脂和處理A的鈦基材在不同聚合時間下的鍵結強度 …………………………………………………………………………… 67 圖5-1-3 複合樹脂在不同聚合時間下的硬度值……………………… 70 圖5-2-1 不同的光源在不同聚合時間下的硬度值…………………… 73 圖5-2-2 複合樹脂在不同光源下完全聚合時的鍵結強度…………… 75 圖5-3-1 複合樹脂的OM剖面圖(a.鍵結測試前50X b.鍵結測試前200X c.鍵結測試後50X d.鍵結測試後200X) ……………………………… 77 圖5-4-1 表面粗度大小和鍵結強度在不同表面處理鈦基材下的關係 …………………………………………………………………………… 79 圖5-4-2 表面處理的sem圖(1)(a.Origin(5000X) b.A2(5000X) c.A2+B1(5000X) d.A2+B2(5000X) e.A2+B3(5000X) f.A2+B4(5000X)) …………………………………………………………………………… 81 圖5-4-3 表面處理的sem圖(2)(a.0+C1(10000X) B.O+C2(10000X) c.O+C3(10000X) d.O+C3(80000X) e.A2+C3(10000X) f.A2+C3(80000X) …………………………………………………………………………… 82 圖5-4-4 表面處理的sem圖(3)(a.A2+C3(80000X) b.O+C3(80000X)) …………………………………………………………………………… 84 圖5-4-5 對Ti元素的ESCA圖譜分析(a.etch time 0s b.etch time 1500s c.etch time 3000s d.etch time 4500s e.etch time 6000s f.etch time 7500s) …………………………………………………………………………… 86 圖5-4-6 不同表面處理的表面潤濕性(a.Origin b.O+C3 c.A2 d.A2+C3) …………………………………………………………………………… 88 圖5-4-7 不同時間的處理C(1)(a.A2+C4(10000X) b.A2+C4(80000X) c.O+C4(80000X) d.A2+C5(10000X) e.A2+C5(80000X) f.O+C5(80000X)) …………………………………………………………………………… 90 圖5-4-8 不同時間的處理C(2)(a.A2+C6(10000X) b.A2+C6(80000X) c.O+C6(80000X) d.A2+C7(10000X) e.A2+C7(80000X) f.O+C7(80000X) …………………………………………………………………………… 91 圖5-4-9 不同電壓的處理C(3)(a.A2+C8(10000X) b.A2+C8(80000X) c.O+C8(80000X) d.A2+C9(2500X) e.A2+C9(80000X) f.0+C9(80000X)) …………………………………………………………………………… 92 圖5-4-10 不同溶液的處理C(4)(a.A2+C10(10000X) b.A2+C10(80000X) c.O+C10(20000X) d.A2+C11(10000X) e.A2+C11(80000X) f.A2+C11(80000X)) …………………………………………………………………………… 93 圖5-4-11 不同處理C的鍵結強度 ……………………………………… 94 圖5-5-1 不同冷熱循環後的鍵結強度大小…………………………… 99 圖5-5-2 殘留不透明層的比例………………………………………… 101 表目錄 表1-2-1 美國牙科學會所定鑄造用合金之成分與機械性質………… 4 表1-2-2 近年來牙科用鈦合金的發展狀況…………………………… 5 表1-3-1 複合樹脂人工牙齒和陶瓷牙齒的比較……………………… 10 表2-1-1 純鈦和其他常用金屬的一些基本物理性質………………… 12 表2-1-2 各級純鈦金屬的含量及機械性質…………………………… 14 表2-2-1 陶瓷成分表…………………………………………………… 19 表2-2-2 部分市售陶瓷成分表………………………………………… 19 表2-4-1 24種常見的有機矽烷耦合劑 ……………………………… 29 表3-1-1 一般目前市面上常使用的接著劑…………………………… 33 表5-4-1 不同表面處理的接觸角……………………………………… 88

    A.H. Tjan, J.R. Dunn, B.E. Grant. Fracture resistance of composite and amalgam cores retained by pins coated with new adhesive resins. Journal of Prosthetic Dentistry;67,6,752-760,1992.

    A.J. Feilzer, A.J.d. Gee, G.L. Davidson. Curing contraction of composites and glass-ionomer cements. J Prosthet.Dent; 59,3,297-300,1988.

    C.J. Burstone, A.J. Goldberg. Beta titanium: a new orthodontic alloy. Am J Orthod;77,2,121–132,1980.

    C.L. Davidson, A.J.d. Gee. Relaxation of polymerization contractions tresses by flow in dental composite. J Dent Res;63,2,146-148,1984.

    D. Gong, C.A. Grimes, O.K. Varghese. Titanium oxide nanotube arrays prepared by anodic oxidation. J.Mater. RES;16,12,3331-3334, 2001.

    D.F. Davidson, M. Suzuki. A Prescription for the Successful use for heavy filled composites in the posterior dentition. Journal of the Canadian Dental Association;65,5,256-260,1999.

    D.F. Williams. Biocomatibility of Clinical implant materials; Vol.2,CRC Press,Inc.Boca Raton,Florida,p112,1981.

    D.J. Garey, A.H. Tjan, R.A. James, A.A. Caputo. Effects of thermocycling, load-cycling, and blood contamination on cemented implant abutments. Journal of Prosthetic Dentistry;71,2,124-132,1994.

    D.P. NaBadalung, DDS, J.M. Powers, PhD, M.E. Connelly, DDS. Comparison of bond strengths of three denture base resins to treated nickel-chromium-beryllium alloy. J Prosthet Dent;80,3, 354-61,1998.

    E. Balaur, J.M. Macak, H. Tsuchiya, P. Schmuki. Wetting behaviour of layers of TiO2 nanotubes with different diameters. J. Mater. Chem;15,4488–4491,2005.

    G.B. Gibbs, R. Hales. Influence of metal lattice vacancies on the oxidation of high temperature materials. The metals society; 201-207,1977.

    G.E. Thompson, G.C. Wood. Porous anodic films formation on aluminum. Nature;290,230-232,1981.

    G.K. Mor, O.K. Varghese. Fabrication of tapered, conical- shapedtitania nanotubes. J. Mater. Res;18,11,2588-2593,2003.

    G.M. Montes-G, R.A. Draughn. In vitro surface degradation of composites by water and thermal cycling Dent Mater;2,5,193-197, 1986.

    H. Matsumura, K. Yoshida, T. Tanaka, M. Atsuta. Adhesive bonding of titanium with a titanate coupler and 4-META/MMA-TBB opaque resin. Journal of Dental Research;69,9,1614-1616,1990.

    H. Yanagida, H. Matsumura, Y. Taira, M. Atsuta, S. Shimoe. Adhesive bonding of composite material to cast titanium with varying surface preparations. Journal of Oral Rehabilitation;29,1 21-126,2002.

    I. Watanabe, K.S. Kurtz, J.L. Kabcenell. Effect of sandblasting and silicoating on bond strength of polymer-glass composite to cast titanium. J Prosthet Dent;82,4,462-467,1999.

    Ivoclar vivadent SR Adoro,Scientific Documentation

    J. Fischer. Ceramic bonding to a dental gold–titanium alloy Biomaterials;23,5,1303–1311,2002.

    J.A. Hautaniemi, J.T. Juhanoja. Porcelain bonding on Ti: Its dependence on surface roughness, firing time and vacuum level. Surface and Interface Analysis;20,421-426,1993.

    J.D. Miller, H. Ishida. Quantitative monomolecular coverage of inorganic particulates by metahryl-functional silanes. Surface Science;148,601,1984.

    J.H. Chern Lin, J.B. Moser, M. Taira, E.H. Greener. Cu-Ti, Co-Ti and Ni-Ti systems: corrosion and microhardness. J Oral Rehabil;17,4,383-393,1990.

    J.L. Gilbert, D.A. Covey. Bond characteristics of porcelain fused to milled titanium. Dent Mater;10,2,134-140,1994.

    J.M. Macak, H. Tsuchiya, P. Schmuki. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angew. Chem. Int. Ed;44,2100-2102,2005.

    J.M. Macak, K. Sirotna, P. Schmuki. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta;50,3679–3684,2005.

    J.P. Nielsen, J.J. Tuccillo. Calculation of Interfacial Stress in Dental Porcelain Bonded to Gold Alloy Substrate. J Dent Res;51,1043 -1047,1972.

    J.P.O. Sullivan and G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. (London) A;317,511-543,1970.

    J.W. McLean, T.H. Hughes. The reinforcement of dental porcelain with ceramic oxides. Br Dent J;119,6,251-267.1965.

    J.W. Mclean. Dental Materials Developments in the UK:A personal View. J Dent Res;75,11,1816-1819,1996.

    K. Ekstrand, I.E. Ruyter, H. Oysaed Adhesion to titanium of methacrylate-based polymer materials. Dental Materials;4,3, 111-115,1988.

    K. Fumiaki, O. Takafumi, I. Tetsuo, M. Naoyuki. Influence of thermal al cycles in water on flexural strength of laboratory processed composite resin. Journal of Oral Rehabilitation;28, 8,703-707,2001.

    K. Ida, M. Takeuchi, T. Togaya, S. Tsutsumi. Studies on the Dental Casting of Titanium Alloy,Part 2.Properties of Titanium Nickel Alloys. J Jpn Res.Soc.Dent.Mater.Appl;37,45–52,1980.

    K. Sangwoo, J. Jyongsik. The measurement of degree of conversion for BIS-GMA/Silica composite by FT-IR spectroscopy. Polymer Testing;15,6,559-571,1996.

    K. Yoshida, Y. Taira, H. Matsumura, M. Atsuta. Effect of adhesive metal primers on bonding a prosthetic composite resin to metals. J Prosthet Dent;69,4,357-362,1993.

    L.C. Sobrinho, M.F. Goes, S. Consani, M.A. Sinhoreti ,J.C. Knowles. Correlation between light intensity and exposure time on the hardness of composite resin. J. OF. Mats. Sci. Mats. in Med;11,6,361-364,2000.

    L.V. Taveira, J.M. Macák, H. Tsuchiya, L.F P. Dick, P. Schmuki. Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4)2SO4 Electrolytes. Journal of The Electrochemical Society;152,10,B405-B410,2005.

    L.V. Taveira, J.M. Macak, K. Sirotna, L.F.P. Dick, P. Schmuki. Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO2 Nanotubes. Journal of The Electrochemical Society;4,153,B137-B143,2006.

    M. Adachi, J.R. Macjert.Jr, E.E. Parry, C.W. Fairhust. Oxide Adherence and Porcelain Bonding to Titanium and Ti-6Al-4V alloy J Dent Res;69,6,1230-1235,June,1990.

    M. Behr, M. Rosentritt, G. Groger, G. Handel. Adhesive bond of veneering composites on various metal surfaces using silicoating titanium-coating or functional monomers. Journal of Dentistry;31,1,33-42,2003.

    M. Wateratrat. Comments on casting of Ti-13Cu-4.5Ni alloys Publication No.(NIH)77-1277,1977.

    M.H. Donachie. Titanium: A Technical Guide. Metal Park, OH: ASM Intermational,43-51,1984.

    M.J.A. Braem, C.L. Davidson, P. Lambrechts, G. Vanherle. In vitro flexural fatigue limits of dental composites. Journal of Biomedical Materials Research;28,1397-1402,1994.

    M.L. Swartz, R.W. Phillips, B. Rhodes. Visible light-activated resins-depth of cure. J Am Dent Assoc;106,634-637,1993.

    O. Hansson, L.E. Moberg. Evaluation of three silicoating methods for resin bonded prostheses. Scand J Dent Res;101,4,243-251, 1993.

    O. Hansson. Strength of bond with Comspan opaque to three silicoated alloys and titanium. Scano J Dent Res;98,3,248 -256, 1990.

    P. Molitor, V. Barron, T. Young. Surface treatment of titanium for adhesive bonding to polymer composites: a review. International Journal of Adhesion & Adhesives;21,2,129-136, 2001

    R. Guggenberger. The Rocatec system—adhesion by tribochemical coating. Deutsche Zahnarztliche Zeitschrift;44,11,874-877, 1989.

    R. Labella, P. Lambrechts, M.B. Van, G. Vanherle. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dental Materials;15,2,128-137,1999.

    R. Musil, H.J. Tiller. The molecule adhesion of resin facings on the alloy surface. Dental Labor;32,1155-1160,1984.

    R.B. Sozio, E.J. Rilcy. The shrink-free ceramic crown. J Prosthet Dent;49,182-187,1983.

    R.B. Price, C.A. Felix, P. Andreou. Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials;25,18,4465–4477,2004.

    R.E. Lorey, M.J. Edge, B.R. Lang, H.S. Lorey. The potential for bonding titanium restorations. Journal of Prosthodontics; 2,3,151-155,1993.

    R.G Craig. Restorative dental materials,11th ed;chap 10 bonding to dental substrates,p.261,2002.

    R.G. Craig. Restorative Dental Materials. 8th.ed,C.V.Mosby Ch14 Ch15,p397-431,p442,1989.

    R.L. Bowen, K. Nemoto, J.E. Rapson. Adhesive bonding of various materials to hard tooth tissues: forces developing in composite materials during hardening. JADA;106,4,475–477 , 1983.

    R.W. Phillips. Science of Dental Materials 8thed, W.B.SaundersCompany,1982

    T. Albrektsson, P-I. Branemark, H.A. Hansson, B. Kasemo. The interface zone of inorganic implants In vivo: Titanium implants in bone. Annals of Biomedical Engineering;11,1,1-27, 1983.

    T.A.M. Spierings, M.C.R.B. Peters, F. Bosman, A.J.M. Plasschaert. Verification of theoretical modelling of heat transformission in teeth by in vivo experiments. Journal of Dental Research;66, 1336-1339,1987.

    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal;27,629-637,1999.

    W.P. Naylor. Introduction to Metal Ceramic Technology Quintessence Publishing Co,Illinois,Ch6,1992.

    Y. Taira, H. Matsumura, K. Yoshida, T. Tanaka, M. Atsuta. Adhesive bonding of titanium with a metha-crylate-phosphate primer and self-curing adhesive resins. J Oral Rehabil;22,409-412,1995.

    Y. Taira, H. Matsumura, M. Atsuta. Bonding of titanium with acidic primers and a tri-n-butylborane initiated luting agent. Journal of Oral Rehabilitation;24,5,385-388,1997.

    Y. Taira, H. Yanagida, H. Matsumura, K. Yoshida, M. Atsuta, Suzuki S.. Adhesive bonding of titanium with a thione-phosphate dual functional primer and self-curing luting agents. Eur J Oral Sci;108,5,456-460,2000.

    Y. Taira, H. Yanagida, H. Matsumura, M. Atsuta. Effects of a metal etchant and two primers on resin bonding durability to titanium. Eur J Oral Sci;112,1,95-100,2004.

    Y. Tsuchimoto, Y. Yoshida, M. Takeuchi. Effect of surface pre-treatment on durability of resin-based cements bonded to titanium. Dental materials;1-8,2005.

    王益昌. 聚合製程對牙科複合樹脂/鈦鍵結行為之影響. 國立成功大學材料科學及工程學系碩士論文,6 1998.

    吳明道. 陽極氧化之奈米多孔氧化鋁的研究. 國立成功大學材料科學及工程學系博士論文,6 2004.

    吳德昌,矽酸系偶合劑之研究, 行政院國家科學委員會補助專題研究報告[縮影資料],1991.

    徐君伍(主編).口腔修復理論與臨床.北京:人民衛生出版社;3(2-3),278-325,1999.

    鐘國雄(編著). 牙科材料學. 合記出版社,2004(第六刷)

    下載圖示 校內:2016-07-27公開
    校外:2016-07-27公開
    QR CODE