簡易檢索 / 詳目顯示

研究生: 蔡昇峰
Tsai, Sheng-Feng
論文名稱: 社交不穩定性壓力對於青少年與成年大鼠中杏仁核神經元適應性和相關記憶表現之影響異同
Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats
指導教授: 任卓穎
Jen, Chauying J.
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 青少年成年樹突突觸恐懼增益驚跳神經可塑性大鼠TrkB
外文關鍵詞: adolescent, adult, dendritic spine, fear-potentiated startle, neuroplasticity, rats, TrkB
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 青少年時期在生物體的中樞神經系統發展過程當中,屬於一個快速變化以及大腦神經網絡大規模重整的發育時期。因此,吾人臆測青少年生物體對於諸如壓力等外界刺激所導致的大腦結構、功能變化,可能與成年有異。但是支持此說法的科學證據仍然寥寥無幾。為探究此議題,本研究採用4週齡之青少年與8週齡之成年雄性大鼠做為動物模型,並於每日對兩週齡別的實驗大鼠施予相同的社交不穩定性壓力 (social instability stress)。長期壓力處理5週後,分析其中壓力處理中樞 - 杏仁核 (amygdala) 相關的學習記憶功能、神經元結構以及與神經可塑性相關的蛋白質表現量。藉由在各別週齡的實驗大鼠之間,直接比較相同的長期壓力處理對杏仁核之功能、結構與生化物質含量所造成之影響,來驗證假說。實驗結果顯示無論青少年抑或成年大鼠,在長期壓力處理的過程當中,相較於同齡控制組皆表現出攝食量減少與較低體重成長。此數據證明,吾人所使用的長期社交不穩定性壓力確實能引起大鼠的典型壓力反應。再者,本實驗採用與杏仁核高度相關的學習記憶評估工具,恐懼增益驚跳反應測試 (fear-potentiated startle test) ,來評量杏仁核相關的認知功能。數據顯示,於青少年時期經歷長期壓力的實驗大鼠相較於同齡的控制鼠在恐懼增益驚跳測試中有較差的表現,反之,成年壓力鼠相較於同齡控制鼠卻在測試中表現較好。接著,吾人利用單一神經元螢光標定 (single-neuron labeling) 技術來觀察杏仁核神經元的型態。結果顯示,於青少年時期經歷壓力的大鼠中,其杏仁核神經元的樹突叢聚數 (dendritic arborization) 與樹突突觸 (dendritic spine) 密度皆有明顯減少。相反地,長期社交不穩定性壓力經驗卻能增加成年大鼠杏仁核神經元的樹突叢聚數與突觸數量。進一步地,我們分析杏仁核中與認知功能以及神經可塑性相關的蛋白質表現量。西方墨點法結果指出,於青少年時期經歷壓力之大鼠杏仁核中,全長型 (full-length) 腦源性神經滋養因子 (brain-derived neurotrophic factor, BDNF) 受體TrkB、突觸標地融合蛋白 (synaptotagmin I, Syt I) ,以及重組突觸相關蛋白 (recombinant synaptosomal-associated protein 25kDa, SNAP-25) 等表現量,相較於同齡控制鼠皆有減少。反觀成年壓力鼠,杏仁核中全長型TrkB表現量則有所增加。最後,本研究藉由比較青少年組與成年組之控制鼠實驗數據,來觀察由9週齡正常成長至13週齡的過程當中,大鼠杏仁核相關功能與結構的變化。吾人發現,於此成長過程中,杏仁核神經元之長度較短的樹突數量減少、較長的樹突則持續延伸。並伴隨著樹突突觸分佈往遠端集中的現象。除此之外,13週齡控制鼠之杏仁核中全長型TrkB與截短型 (truncated) TrkB表現量也較9週齡來得多。 綜合以上所述,本實驗的數據說明長期社交不穩定性壓力對於不同週齡大鼠的杏仁核相關學習記憶表現有不同影響。而此現象可能是因為不同週齡大鼠在經歷長期壓力後,各自BDNF-TrkB機制途徑與神經可塑性改變不同所致。此外,研究結果也進一步指出,在青少年期間,尚未發育完全的杏仁核神經元之結構與功能,在面對外界長期壓力挑戰下是容易損壞的。反之,成熟的杏仁核神經元則對於外在壓力挑戰有較好的適應能力。

    Adolescence is a time of developmental changes and reorganization in the brain, thus adolescents are likely to be more vulnerable than adults to the stress effects. However, scientific evidence in support of this hypothesis is still limited. We compared the stress effects on the amygdala experienced in adolescent (4-wk-old) rats to similar stress effects experienced in young adult rats (8-wk-old). Chronic social instability for 5 wks reduced food consumption and body weight gain in both age groups. However, this stress paradigm exerted opposite effects on fear-potentiated startle, an amygdala-dependent learning and memory task, in two groups, i.e., hampered the performance in adolescent group and improved it in adult group. Using a single neuron labeling technique, we found that the stress applied in adolescent rats reduced dendritic field and spine density in basal and lateral amygdala neurons. Yet opposite stress effects on neuron morphology were observed in adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB, synaptotagmin I and SNAP-25. In adult rats, it enhanced full-length TrkB expression in the amygdala. Finally, the amygdala neuron morphology differed considerably between 9-wk-old and 13-wk-old control rats, i.e., showing less short dendrites, lengthened longest dendrite, and concentrated spines in the peripheral region. These age-dependent morphological changes were accompanied with local full-length and truncated TrkB upregulation. In summary, our results supported that chronic social instability exerts age-dependent effects on the fear-potentiated startle, possibly via altering BDNF-TrkB signaling and neuroplasticity in the amygdala. While amygdalar neuron development in the adolescent brain was hampered by the stress, mature neurons in the amygdala were capable of adapting to the stress.

    中文摘要 ---------------------------------------------------------------------------------- p. 2 英文摘要 ---------------------------------------------------------------------------------- p. 4 誌謝 ---------------------------------------------------------------------------------------- p. 6 目錄 ---------------------------------------------------------------------------------------- p. 7 圖目錄 ------------------------------------------------------------------------------------- p. 8 第一章 緒論 (Introduction) ------------------------------------------------------------ p. 9 第二章 實驗設計 (Experimental Designs) ----------------------------------------- p. 13 第三章 材料與方法 (Materials and Methods) ------------------------------------- p. 15 壹、實驗動物 (Experimental Animals) ------------------------------------------- p. 15 貳、長期社交不穩定性壓力 (Chronis Social Instability Stress) -------------- p. 15 参、恐懼增益驚跳測試 (Fear-potentiated Startle Test, FPS) ------------------ p. 16 肆、單一神經元螢光標定 (Single-neuron Labeling) --------------------------- p. 17 伍、西方點墨法 (Western Blotting) ----------------------------------------------- p. 20 陸、統計分析 (Statistical Analysis) ------------------------------------------------ p. 23 柒、試劑配製配方 (Protocols of Reagent Preparations) ------------------------ p. 23 第四章 結果 (Results) ----------------------------------------------------------------- p. 32 第五章 討論 (Discussion) ------------------------------------------------------------ p. 36 第六章 參考文獻 (References) ------------------------------------------------------ p. 44 第七章 圖 (Figures) ------------------------------------------------------------------- p. 53

    1. Spear, L. P. (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24, 417-463
    2. Morrissey, M. D., Mathews, I. Z., and McCormick, C. M. (2011) Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats. Neurobiol Learn Mem 95, 46-56
    3. Roozendaal, B., McEwen, B. S., and Chattarji, S. (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10, 423-433
    4. Rodrigues, S. M., LeDoux, J. E., and Sapolsky, R. M. (2009) The influence of stress hormones on fear circuitry. Annu Rev Neurosci 32, 289-313
    5. LeDoux, J. E. (2000) Emotion circuits in the brain. Annu Rev Neurosci 23, 155-184
    6. Pitkanen, A., Savander, V., and LeDoux, J. E. (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20, 517-523
    7. LeDoux, J. (2007) The amygdala. Curr Biol 17, R868-874
    8. McCormick, C. M., and Mathews, I. Z. (2010) Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Prog Neuropsychopharmacol Biol Psychiatry 34, 756-765
    9. Conrad, C. D., LeDoux, J. E., Magarinos, A. M., and McEwen, B. S. (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113, 902-913
    10. Hui, I. R., Hui, G. K., Roozendaal, B., McGaugh, J. L., and Weinberger, N. M. (2006) Posttraining handling facilitates memory for auditory-cue fear conditioning in rats. Neurobiol Learn Mem 86, 160-163
    11. Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., and Chattarji, S. (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci U S A 102, 9371-9376
    12. Mitra, R., and Sapolsky, R. M. (2008) Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci U S A 105, 5573-5578
    13. Vyas, A., Jadhav, S., and Chattarji, S. (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143, 387-393
    14. Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., and Chattarji, S. (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22, 6810-6818
    15. Vyas, A., Pillai, A. G., and Chattarji, S. (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128, 667-673
    16. Lakshminarasimhan, H., and Chattarji, S. (2012) Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 7, e30481
    17. Morrissey, M. D., Mathews, I. Z., and McCormick, C. M. (2010) Enduring deficits in contextual and auditory fear conditioning after adolescent, not adult, social instability stress in male rats. Neurobiol Learn Mem
    18. Davis, M. (1989) Neural systems involved in fear-potentiated startle. Ann N Y Acad Sci 563, 165-183
    19. Davis, M. (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61, 741-756
    20. Hitchcock, J. M., and Davis, M. (1987) Fear-potentiated startle using an auditory conditioned stimulus: effect of lesions of the amygdala. Physiol Behav 39, 403-408
    21. Cousens, G., and Otto, T. (1998) Both pre- and posttraining excitotoxic lesions of the basolateral amygdala abolish the expression of olfactory and contextual fear conditioning. Behav Neurosci 112, 1092-1103
    22. Maren, S. (1998) Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J Neurosci 18, 3088-3097
    23. Maren, S., Aharonov, G., and Fanselow, M. S. (1996) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav Neurosci 110, 718-726
    24. LeDoux, J. E., Cicchetti, P., Xagoraris, A., and Romanski, L. M. (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10, 1062-1069
    25. Campeau, S., and Davis, M. (1995) Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 15, 2301-2311
    26. Lee, Y., Walker, D., and Davis, M. (1996) Lack of a temporal gradient of retrograde amnesia following NMDA-induced lesions of the basolateral amygdala assessed with the fear-potentiated startle paradigm. Behav Neurosci 110, 836-839
    27. Sananes, C. B., and Davis, M. (1992) N-methyl-D-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle. Behav Neurosci 106, 72-80
    28. Maren, S. (1999) Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J Neurosci 19, 8696-8703
    29. Rattiner, L. M., Davis, M., French, C. T., and Ressler, K. J. (2004) Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci 24, 4796-4806
    30. Rattiner, L. M., Davis, M., and Ressler, K. J. (2004) Differential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning. Learn Mem 11, 727-731
    31. Rattiner, L. M., Davis, M., and Ressler, K. J. (2005) Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist 11, 323-333
    32. Lin, T. W., Chen, S. J., Huang, T. Y., Chang, C. Y., Chuang, J. I., Wu, F. S., Kuo, Y. M., and Jen, C. J. (2012) Different types of exercise induce differential effects on neuronal adaptations and memory performance. Neurobiol Learn Mem 97, 140-147
    33. Liu, Y. F., Chen, H. I., Wu, C. L., Kuo, Y. M., Yu, L., Huang, A. M., Wu, F. S., Chuang, J. I., and Jen, C. J. (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587, 3221-3231
    34. Chapman, E. R. (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3, 498-508
    35. Geddes, J. W., Hess, E. J., Hart, R. A., Kesslak, J. P., Cotman, C. W., and Wilson, M. C. (1990) Lesions of hippocampal circuitry define synaptosomal-associated protein-25 (SNAP-25) as a novel presynaptic marker. Neuroscience 38, 515-525
    36. Lau, C. G., Takayasu, Y., Rodenas-Ruano, A., Paternain, A. V., Lerma, J., Bennett, M. V., and Zukin, R. S. (2010) SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 30, 242-254
    37. Selak, S., Paternain, A. V., Aller, M. I., Pico, E., Rivera, R., and Lerma, J. (2009) A role for SNAP25 in internalization of kainate receptors and synaptic plasticity. Neuron 63, 357-371
    38. Steegmaier, M., Yang, B., Yoo, J. S., Huang, B., Shen, M., Yu, S., Luo, Y., and Scheller, R. H. (1998) Three novel proteins of the syntaxin/SNAP-25 family. J Biol Chem 273, 34171-34179
    39. Hou, Q. L., Gao, X., Lu, Q., Zhang, X. H., Tu, Y. Y., Jin, M. L., Zhao, G. P., Yu, L., Jing, N. H., and Li, B. M. (2006) SNAP-25 in hippocampal CA3 region is required for long-term memory formation. Biochem Biophys Res Commun 347, 955-962
    40. Liu, Y. F., Chen, H. I., Yu, L., Kuo, Y. M., Wu, F. S., Chuang, J. I., Liao, P. C., and Jen, C. J. (2008) Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem 90, 81-89
    41. Rybkin, II, Zhou, Y., Volaufova, J., Smagin, G. N., Ryan, D. H., and Harris, R. B. (1997) Effect of restraint stress on food intake and body weight is determined by time of day. Am J Physiol 273, R1612-1622
    42. Harris, R. B., Zhou, J., Youngblood, B. D., Rybkin, II, Smagin, G. N., and Ryan, D. H. (1998) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol 275, R1928-1938
    43. Hsu, Y. C., Yu, L., Chen, H. I., Lee, H. L., Kuo, Y. M., and Jen, C. J. (2012) Blood pressure variations real-time reflect the conditioned fear learning and memory. PLoS One 7, e32855
    44. McAllister, A. K., Lo, D. C., and Katz, L. C. (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15, 791-803
    45. Minichiello, L. (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10, 850-860
    46. Liao, L., Pilotte, J., Xu, T., Wong, C. C., Edelman, G. M., Vanderklish, P., and Yates, J. R., 3rd (2007) BDNF induces widespread changes in synaptic protein content and up-regulates components of the translation machinery: an analysis using high-throughput proteomics. J Proteome Res 6, 1059-1071
    47. Tartaglia, N., Du, J., Tyler, W. J., Neale, E., Pozzo-Miller, L., and Lu, B. (2001) Protein synthesis-dependent and -independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem 276, 37585-37593
    48. Numakawa, T., Suzuki, S., Kumamaru, E., Adachi, N., Richards, M., and Kunugi, H. (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25, 237-258
    49. Luberg, K., Wong, J., Weickert, C. S., and Timmusk, T. (2010) Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J Neurochem 113, 952-964
    50. Klein, R., Parada, L. F., Coulier, F., and Barbacid, M. (1989) trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8, 3701-3709
    51. Stoilov, P., Castren, E., and Stamm, S. (2002) Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 290, 1054-1065
    52. Eide, F. F., Vining, E. R., Eide, B. L., Zang, K., Wang, X. Y., and Reichardt, L. F. (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16, 3123-3129
    53. Fryer, R. H., Kaplan, D. R., and Kromer, L. F. (1997) Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro. Exp Neurol 148, 616-627
    54. Yacoubian, T. A., and Lo, D. C. (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3, 342-349
    55. Bush, D. E., Caparosa, E. M., Gekker, A., and Ledoux, J. (2010) Beta-adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning. Front Behav Neurosci 4, 154
    56. Debiec, J., and Ledoux, J. E. (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267-272
    57. Donley, M. P., Schulkin, J., and Rosen, J. B. (2005) Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behav Brain Res 164, 197-205
    58. Hui, G. K., Figueroa, I. R., Poytress, B. S., Roozendaal, B., McGaugh, J. L., and Weinberger, N. M. (2004) Memory enhancement of classical fear conditioning by post-training injections of corticosterone in rats. Neurobiol Learn Mem 81, 67-74
    59. Jin, X. C., Lu, Y. F., Yang, X. F., Ma, L., and Li, B. M. (2007) Glucocorticoid receptors in the basolateral nucleus of amygdala are required for postreactivation reconsolidation of auditory fear memory. Eur J Neurosci 25, 3702-3712
    60. Marti, O., and Armario, A. (1998) Anterior pituitary response to stress: time-related changes and adaptation. Int J Dev Neurosci 16, 241-260
    61. McCormick, C. M., and Mathews, I. Z. (2007) HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacol Biochem Behav 86, 220-233
    62. Lukkes, J. L., Mokin, M. V., Scholl, J. L., and Forster, G. L. (2009) Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm Behav 55, 248-256
    63. Chareyron, L. J., Lavenex, P. B., and Lavenex, P. (2012) Postnatal development of the amygdala: a stereological study in rats. J Comp Neurol 520, 3745-3763
    64. Nagahara, A. H., and Tuszynski, M. H. (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10, 209-219
    65. Silhol, M., Bonnichon, V., Rage, F., and Tapia-Arancibia, L. (2005) Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience 132, 613-624

    下載圖示 校內:2015-08-19公開
    校外:2015-08-19公開
    QR CODE