| 研究生: |
蔡依樺 Tsai, Yi-Hua |
|---|---|
| 論文名稱: |
利用陽性—陰性離子型界面活性劑系統合成螺旋狀中孔洞氧化矽材料 Synthesis of Mesoporous Silica Helical Fiber Using Cationic - Anionic Binary Surfactant Mixture |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 中孔洞氧化矽 、界面活性劑 |
| 外文關鍵詞: | binary surfactant, helical fiber |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在生物體中的骨骼、牙齒、和海洋中的矽藻、貝類等等,都是藉由高度結合的無機物與有機物複合而成。為了解自然界生物成礦的原理,本研究將利用有機物組成的模板與無機物結合,期盼能合成出各種絢麗型態的奈米結構材料。
為合成有機無機複合材料,本實驗選用界面活性劑做為有機模板,再與無機物(矽酸鈉溶液、四乙氧基矽烷)結合。根據界面活性劑化學,不同電荷之正負離子型界面活性劑系統,即使在非常稀薄的條件下仍可組成各種不同的微胞結構,包含有棍狀微胞、囊泡、及層狀結構。這些有機物的結合除了可用於模擬細胞膜性質外,更能作為具有特殊型態的介尺度結構氧化矽材料的模板。本實驗採用陽離子型界面活性劑( CnTMAB,n = 16,18 )及陰離子型界面活性劑( SDS )以適當比例混合(SDS/CnTMAB莫耳比,S ),經靜電作用力而形成棍狀微胞做為有機模板後,加入中性三區塊共聚高分子P123與有機物模板結合,降低有機模板之軟硬度並增加有機模板與無機物之間的作用力,再結合低濃度的矽酸鈉( Sodium Silicate )溶液,於pH值1.0 - 2.5,溫度55 ℃下進行反應,製備螺旋狀中孔洞氧化矽材料。
本實驗分成三個主要部份:一、以C16TMAB為陽離子型界面活性劑所製備之螺旋狀中孔洞氧化矽;二、改變陽離子界面活性劑的碳鏈長,以C18TMAB為陽離子型界面活性劑所製備之螺旋狀中孔洞氧化矽;三、以TEOS為無機物來源所製備之圓球狀中孔洞氧化矽。本研究當中各種實驗變因對氧化矽型態的影響,包括:界面活性劑間比例、矽溶液的pH值、界面活性劑濃度、矽酸鈉含量、反應溫度、流場等,因此我們將針對各變因一一討論,找出產率最佳的合成條件並整合其結果推測出合成機制。
本實驗可利用簡單的合成方法,在不需要具有光學活性模板的情況下,即可成功合成出產率高、再現性佳之螺旋狀中孔洞氧化矽。因此,本研究成果對於自然界生物成礦的形成機制及理論,具有很高的參考價值。
The skeleton, teeth in organisms and the diatoms, shells in the sea and so on, are all highly joint complexes composed of inorganic and organic compounds. To unsolved biomineralization principles in nature, this research will use surfactant-based template to combine with inorganic silica species to synthesize incredible shapes of nanostructured materials. According to surfactant chemistry, even under very dilute condition, the system of cationic–anionic surfactants can form various micelle structures, including rod micelle, vesicles micelle, and laminar structure. The combination of surfactants not only simulates the property of cell membrane, but also be a template of silica microstructure with spectacular morphologies.
In this experiment, we first mixed cationic surfactant (CnTMAB, n = 16, 18 ) and anionic surfactant (SDS), to form rod micelle as organic template at proper SDS/CnTMAB molar ratio. Then, the nonionic Pluronic triblock copolymer–P123 was added to combine with catanionic surfactant template to reduce the rigidity and enhance the interaction between organic template and inorganic species. Finally, the surfactants solution was combined with a sodium silicate solution at pH = 1.0 - 1.5, to generate mesoporous silica helical fibers at 50 - 60 ℃.
This thesis was divided into three parts:1. Synthesizing mesoporous silica helical fibers by C16TMAB cationic surfactant–SDS–P123. 2. Using C18TMAB cationic surfactant to synthesize mesoporous silica helical fibers. 3. Replacing the inorganic silicate solution by organic silica source of tetraethyl orthosilicate to synthesize mesoporous silica nanospheres (50 - 200 nm) in uniform size.
We also studied the experimental factors, including changing a series of factors including CTAB/SDS molar ratio, pH value, surfactant concentration, temperature, stirring rate etc., to tailor the mesoporous silica morphologies. Using the experimental result, we tried to find out the best synthesis condition for the mesoporous silica in the desired morphology, and propose reasonable mechanisms for the growth of different silica morphologies.
According to our experimental results, the mesoporous silicas in helical fiber, ribbon, or nanosphere forms have been successfully prepared via a simple and convenient method. The yield of products is high and the result is reproducible. We find that the helicity of the mesoporous silica is generated without using chiral template. Therefore, our research results have high referencing values for understanding biomineralization concepts and theories.
1. M. E. Davis, Nature 2002, 417, 813.
2. N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350.
3. A. Stein, Adv. Mater. 2003, 15, 763.
4. D. Y. Yu, C. Z. Tian, B. Z. Zhao, Curr. Opin. Solid State Mater. Sci. 2003, 7, 191
5. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
6. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
7. A. H. Heuer, D. J. Fink, V. J. Laraia, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackesll, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis, A. I. Caplplan, Science, 1992, 255, 1098.
8. A. Sayari , Chem. Mater., 1996, 8, 1840.
9. R. Neumann, A. M. Khenkin, Chem. Commun., 1996, 23, 2643.
10. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
11. M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
12. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
13. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
14. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
15. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
16. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
17. W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater. 2004,16, 1756.
18. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao, Angew. Chem., 2003, 115 , 3254.
19. A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
20. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
21. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
22. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
23. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
24. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
25. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
26. A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
27. T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
28. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
29. E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
30. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
31. T. F. Todros, Surfactants, Academic Press : London, 1984.
32. C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E. Spigone, J. Phys. Chem. B, 2007, 111, 898
33. G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules, 1994, 27, 4145
34. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
35. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
36. 張正明, 酸性溶液下中孔徑分子篩的反應機構之探討, 中原大學化學所, 1992
37. 王書駿, MCM-41孔徑控制之研究, 中央大學化學工程與材料工程研究所, 1995
38. G. L. Lin, Y. H. Tsai, H. P. Lin, C. Y. Tang, and C. Y., Langmuir 2007, 23, 4115.
39. Y. Yang, M. Suzuki, S. Owa, H. Shirai and K. Hanabusa, Chem. Commun., 2005, 4462.
40. Y. Yang, M. Suzuki, H. Fukui, H. Shirai, and K. Hanabusa, Chem. Mater., 2006, 18, 1324.
41. Y. Qu, J. D. Carter, and T. Guo, J. Phys. Chem. B, 2006, 110, 8296.
42. K. Ikari, K. Suzuki, and H. Imai, Langmuir, 2006, 22, 802.
43. K. Suzuki, K. Ikari, and H. Imai, J. AM. CHEM. SOC., 2004, 126, 462.
44. Y. Yang, M. Suzuki, S. Owa, H. Shirai, and K. Hanabusa, J. Am. Chem. Soc., 2007, 129, 581
45. T. Zheng, J. Pang, G. Tan, J. He, G. L. McPherson, Y. Lu, Langmuir, 2007, 23, 5143.
46. L. Zhang, P. Li, X. Liu, L. Du, and E. Wang, Adv. Mater., ,2007, 19, 4279.
47. L. Liu, H. Z. Kou, W. Mo, H. Liu, and Y. Wang, J. Phys. Chem. B, 2006, 110, 15218
48. N. Zhao and L. Qi, Adv.Mater., 2006, 18, 359.
49. Benito Rodrı´guez-Gonza´lez, Vero´ nica Salgueirin˜ o-Maceira, Florencio Garcı´a-Santamarı´a, and Luis M. Liz-Marza´n, Nano Lett., 2002, 2, 5, 471.
50. C. L. Fang, K. Qian, J. Zhu, S. Wang, X. Lv and S. H. Yu, Nanotechnology, 2008, 19, 125601.
51. J. Wang, Q. Xiao, H. Zhou, P. Sun, Z. Yuan, B. Li, D.Ding, A. C. Shi, and T. Chen, Adv. Mater., 2006, 18, 3284.