簡易檢索 / 詳目顯示

研究生: 張世賢
Chang, Shih-Hsien
論文名稱: Inconel 718與713 LC超合金熱均壓製程參數及特性研究
Study the parameter and character of HIP on Inconel 718 and 713 LC Superalloys
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 131
中文關鍵詞: 孔隙率英高鎳713LC 超合金抗拉強度0.2% 降伏強度伸長率英高鎳718 超合金熱均壓
外文關鍵詞: Elongation, 0.2% Yield Strength, Tensile strength, Porosity, Inconel 718 superalloy, Hot Isostatic Pressing, Inconel 713 LC superalloy
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    熱均壓(Hot Isostatic Pressing, HIP)技術已廣泛應用於鑄造工業以去除鑄造過程中所產生之內部孔隙,它結合了高溫及高壓方式以提供材料較佳的性質,並改善鑄造材料的強度、延展性與疲勞壽命。Inconel 718及713 LC是使用在航太工業上最多的超合金材料,同時具有高溫優越的抗腐蝕性、強度、潛變及疲勞等性質。Inconel 718及713 LC超合金是典型的γ´ (Ni3(Al, Ti))在γ基地上析出,隨著γ´析出量的增加而提高強度,而Inconel 718特別又以介金屬γ˝ (Ni3Nb)析出來達到強化效果,已持續並成為航太引擎中之重要合金。

    本研究主要探討熱均壓製程對Inconel 718及713 LC鑄造超合金之影響,在Inconel 718超合金實驗中,使用四種不同之熱均壓溫度包括1150、1175、1180與1205 ℃;四種不同之熱均壓壓力為1000、1500、1750與2000 Bar;三種不同的保溫保壓時間為2、3及4小時。利用常溫及高溫拉伸試驗、孔隙率、TEM與XRD顯微結構等分析來評估熱均壓製程對鑄造超合金性質之影響。

    實驗結果顯示熱均壓製程為1180 ℃, 1750 Bar, 4 hours對Inconel 718鑄造超合金性質最佳,可以明顯地降低其孔隙率與增加拉伸強度、改善偏析組織並使晶粒尺寸均一化;應變速率為0.001s-1的拉伸試驗時,常溫25 ℃的抗拉強度可以提昇31%,高溫540 ℃為27%,650 ℃為24%;常溫25 ℃的0.2%降伏強度可以提昇40%,高溫540 ℃為31%,650 ℃為28%;25 ℃的伸長率增加100%,高溫540 ℃為130%,650 ℃為60%。當應變速率為0.0001s-1的拉伸試驗時,常溫25 ℃的抗拉強度可以提昇24%,高溫540 ℃為20%;常溫25 ℃的0.2%降伏強度可以提昇29%,高溫540 ℃為27%;25 ℃的伸長率增加54%,高溫540 ℃為282%。

    Inconel 713 LC超合金實驗中,使用三種不同之熱均壓溫度包括1180、1195與1210 ℃;二種不同之熱均壓壓力為1500及1750 Bar;二種不同的保溫保壓時間為2及4小時。同樣利用常溫及高溫拉伸試驗、孔隙率、TEM與XRD顯微結構等分析來評估熱均壓製程對鑄造超合金性質之影響。

    Inconel 713 LC鑄造超合金的最佳熱均壓製程為1180 ℃, 1750 Bar, 2小時,同樣可以明顯地降低其孔隙率與增加拉伸強度、改善偏析組織;應變速率為0.001s-1的拉伸試驗時,常溫25 ℃的抗拉強度可以提昇8.8%,高溫540 ℃為13%,650 ℃為14%;常溫25 ℃的0.2%降伏強度可以提昇13%,高溫540 ℃為11%,650 ℃為14%。25 ℃的伸長率增加33%,高溫540 ℃為22%,650 ℃為100%。當應變速率為0.0001s-1的拉伸試驗時,常溫25 ℃的抗拉強度可以提昇12%,高溫540 ℃為10%;常溫25 ℃的0.2%降伏強度可以提昇16%,高溫540 ℃為10%;25 ℃的伸長率增加30%,高溫540 ℃為24%。

    ABSTRACT

    Hot Isostatic Pressing (HIP) is widely used in the casting industry to remove the internal porosity generated during the casting process. It combines higher pressure and temperature to produce materials and parts with substantially better properties than those by other methods. This results in improved strength, ductility and fatigue life of castings. Inconel 718 and 713 LC are the most widely used superalloys for aerospace applications. The 718 and 713 LC nickel-based superalloys have decent corrosion resistance, high strength and ambient temperature and excellent creep and fatigue strengths at high temperature. Inconel 718 and 713 LC superalloys typically consists of γ´ (Ni3(Al, Ti)) dispersed in a γ matrix and the strength increases with increasing volume fraction of γ´ . The Inconel 718 specially strengthened by the γ˝ intermetallic precipitate (Ni3Nb), has become and will continue to be the workhorse alloy for aircraft engines.

    The aim of this paper is to discuss the methods and to find a suitable soaking time of HIP for Inconel 718 and 713 LC superalloy castings. In the study of Inconel 718 superalloy, the parameters of HIP process included of four different temperatures are used: 1150, 1175, 1180 and 1205 ℃, four different pressures are used: 1000, 1500, 1750 and 2000 Bar and three different soaking time are 2, 3 and 4 hours. The Inconel 718 superalloy is used throughout this study. To evaluate the effects of microstructure and tensile properties of Inconel 718 superalloy by HIP process, two different strain rates of tension test at room and high temperature were evaluated. The microstructure, TEM and XRD inspections were performed.

    The experiment results show that 1180 ℃, 1750 Bar, 4 hours of HIP treatment for Inconel 718 superalloy was optimum. It can improve the microstructure and tensile properties of Inconel 718 superalloy castings. Through the optimum HIP treatment, the grain sizes are uniform and the segregated structure is improved. At fast strain rate (0.001s-1), it increased the tensile strength by 31% at 25 ℃, 27% at 540 ℃, and 24% at 650 ℃. The 0.2% yield strength increased 40% at 25 ℃, 31% at 540 ℃, and 28% at 650 ℃. Meanwhile the elongation increased 100% at 25 ℃, 130% at 540 ℃, and 60% at 650 ℃ after tension tests. When the strain rate was very slowly (0.0001s-1), it also increased the tensile strength by 24% at 25 ℃ and 20% at 540 ℃. The 0.2% yield strength increased 29% at 25 ℃ and 27% at 540 ℃. The elongation increased 54% at 25 ℃ and 282% at 540 ℃.

    In the study of Inconel 713 LC superalloy, the parameters of HIP process included of three different temperatures are used: 1180, 1195 and 1210 ℃, two different pressures are used: 1500 and 1750 Bar and two different soaking time are 2 and 4 hours. The Inconel 713 LC superalloy is used throughout this study. To evaluate the effects of microstructure and tensile properties of Inconel 713 LC superalloy by HIP process, two different strain rates of tension test at room and high temperature were evaluated. The microstructure, TEM and XRD inspections were performed.

    The experiment results show that 1180 ℃, 1750 Bar, 2 hours of HIP treatment for Inconel 713 LC superalloy was optimum. At fast strain rate (0.001s-1), it increased the tensile strength by 8.8% at 25 ℃, 13% at 540 ℃, and 14% at 650 ℃. The 0.2% yield strength increased 13% at 25 ℃, 11% at 540 ℃, and 14% at 650 ℃. Meanwhile the elongation increased 33% at 25 ℃, 22% at 540 ℃, and 100% at 650 ℃ after tension tests. When the strain rate was very slowly (0.0001s-1), it also increased the tensile strength by 12% at 25 ℃ and 10% at 540 ℃. The 0.2% yield strength increased 16% at 25 ℃ and 10% at 540 ℃. The elongation increased 30% at 25 ℃ and 24% at 540 ℃.

    目錄 中文摘要……………………………..…………………………………... I 英文摘要…………………………………………………………………. IV 誌謝…………………………………………..…………………………... VI 表目錄………………………………………………………………..…... XII 圖目錄………………………………………………………………..…... XIII 第一章 前言……………………………………………………………... 1 1.1研究之背景及目的………………………………………………… 1 第二章 文獻回顧…………………………………………………………. 3 2.1熱均壓原理………………………………………………………… 3 2.2熱均壓設備…………………………………………………….…... 4 2.3熱均壓影響因素……………………………………………….…... 6 2.4鎳基超合金…………………………………………………….…... 7 2.4.1 Inconel 718 超合金…………...………………………….…... 9 2.4.2 Inconel 713 LC超合金……..…………………………….…… 10 2.4.3 Inconel 718與713 LC超合金主要元素之影響……………… 10 2.4.4 Inconel 718與713 LC超合金之主要析出相…….………….. 12 2.4.5鎳基超合金之強化機構………………………..….………….. 15 第三章 實驗方法及進行步驟…………………………………………... 17 3.1實驗方法…………………………………………………….…….. 17 3.2研究流程…………………………………………………….…….. 18 第四章 實驗結果與討論………………………………………………... 19 4.1 Inconel 718 超合金熱均壓……………………………………….. 19 4.1.1成份分析………………………………………………………. 19 4.1.2鑄件加工………………………………………………………. 19 4.1.3熱均壓處理參數………………………………………………. 19 4.1.4固溶及時效熱處理……………………………………………. 20 4.1.5熱均壓溫度(Temperature)參數探討………………………….. 21 4.1.5-1硬度(Hardness)試驗……………………………………… 21 4.1.5-2拉伸(Tensile)試驗………………………………………... 21 4.1.5-3孔隙率(Porosity)試驗……………………………….….… 24 4.1.5-4抗彎(Bending)試驗………………………………….….... 24 4.1.5-5 XRD分析……………………………………………………… 25 4.1.5-6顯微組織分析…………………………………………………. 26 4.1.6熱均壓壓力(Pressure)參數探討………………………………. 28 4.1.6-1硬度試驗………………………………………………………. 28 4.1.6-2拉伸試驗………………………………………………………. 29 4.1.6-3孔隙率試驗………………………………………….….… 31 4.1.6-4抗彎試驗…………………………………………….….… 32 4.1.6 -5 XRD分析………………………………………………... 32 4.1.6-6顯微組織分析…………………………………………….. 33 4.1.7熱均壓時間(Soaking Time)參數探討………………………… 33 4.1.7-1硬度試驗…………………………………………….….… 33 4.1.7-2拉伸試驗…………………………………………….….… 34 4.1.7-3孔隙率試驗………………………………………….……. 37 4.1.7-4抗彎試驗…………………………………………….….… 37 4.1.7-5 XRD分析……………………….………………………... 38 4.1.7-6顯微組織分析…………………………………………………. 38 4.1.8 EPMA分析……………………………………………………. 39 4.1.9 TEM分析……………………………………………………... 40 4.1.10拉伸破壞面分析………………………..……………………. 41 4.2 Inconel 713 LC 超合金熱均壓…………………………………… 42 4.2.1成份分析………………………………………………………. 42 4.2.2鑄件加工………………………………………………………. 42 4.2.3熱均壓處理參數………………………………………………. 42 4.2.4固溶及時效熱處理……………………………………………. 43 4.2.5熱均壓溫度(Temperature)參數探討………………………….. 43 4.2.5-1硬度(Hardness)試驗…………………………………….... 43 4.2.5-2拉伸(Tensile)試驗…………………………………….….. 44 4.2.5-3孔隙率(Porosity)試驗…………….………………….…... 46 4.2.5-4抗彎(Bending)試驗…………….…………………….…... 47 4.2.5-5 XRD分析…………………………………………….…... 47 4.2.5-6顯微組織分析…………….…………………………………… 48 4.2.6熱均壓壓力(Pressure)及時間(Time)探討……………………. 50 4.2.6-1硬度試驗………………….………………………………. 50 4.2.6-2拉伸試驗…………………...………….………………….. 51 4.2.6-3孔隙率試驗…………….………………….….…………... 53 4.2.6-4抗彎試驗…………………….…………….….…………... 54 4.2.6-5 XRD分析…………………………………………….…... 54 4.2.6-6顯微組織分析…………….………………………...……. 55 4.2.7 EPMA分析……………………………………………….…… 56 4.2.8 TEM分析……………………………………………………... 56 4.2.9拉伸破壞面分析………………………………………………. 57 第五章 結論……………………………………………………………... 117 第六章 總結……………………………………………………………... 123 第七章 參考文獻………………………………………………………... 125 自述………………………………………………………………………. 130

    第七章 參考文獻

    1.T. Garvare, ”Proceedings of the International Conference on Hot Isostatic Pressing”, The Swedish Institute of Production Engineering Research-Lulea/15-17 June (1987)
    2.Koizumi, Mitsue, ”Hot Isostaric Pressing Theory and Applications”, International Conference on Hot Isostatic Pressing/Elsevier Applied Science, (1992)
    3.林天財, ”熱均壓”, 金屬工業33卷5期, pp.94-95, 1999年9月
    4.林江財, ”耐高溫金屬的粉末冶金與應用”, 金工第17卷第4期, pp.60-65, 1983年
    5.梁誠、張世賢, ”熱均壓強化之完全緻密型粉末冶金零件”, 粉末冶金會刊第27卷第4期, pp.261-270, 2002年11月
    6.李世欽、張世賢、何信弘, ”熱均壓技術之應用”, 鑄造科技第177期, pp.3-9, 20004年6月
    7.G.A. Rao, M. Kumar, M. Srinivas and D.S. Sarma, ”Effect of standard on the microstructure and mechanical properties of hot isostatic pressed superalloy inconel 718”, Materials Science and Engineering A 355, pp.114-125, (2003)
    8.G.A. Rao, M. Srinivas and D.S. Sarma, ”Effect of the thermo-mechanical working on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718”, Materials Science and Engineering A 383, pp.201-212, (2004)
    9.程人俠, ”超合金的發展現況”, 工程, pp.31-45, 1986年12月
    10.何長慶, ”超合金粉末製程的趨勢”, 金工第18卷第4期,pp.79-85,1984年7月
    11.余光鄂, ”超合金的應用與製造”, 材料科學, pp.95-109, 1984年
    12.何堃森、劉先進, ”航空用大型薄壁構造鑄件INCO718真空鑄造及其相關性質之研究”, 鑄工第63期, pp.16-37, 1989年
    13.Flow Autoclave System, Inc. ”Hot Isostatic Pressing Applications”
    14.唐自標、梁誠、曾博義、張世賢, ”以熱均壓處理強化添加TiC微粉之高釩工具鋼研究”, 粉末冶金會刊第29卷第2期, pp.73-80,2004年5月
    15.梁誠、唐自標、曾博義、張世賢, ”均壓輔助燒結高釩工具鋼添加TiC微粉之研究”, 粉末冶金會刊第29卷第3期, pp.156-164, 2004年8月
    16.Materials Handbook Ninth Edition Volume 7 Powder Metallurgy, ”Hot Isostatic Pressing of Metal Powders”, American Society for Metals, pp.419- 443 (1984)
    17.C. Barre, ”Hot Isostatic Pressing Saving Time And Money”, The International Journal of Powder Metallurgy, Vol.35, No3, pp.51-52, (1999)
    18.F. Zimmerman, C. Bergman and J. Westerlund, ”Cost-Effective Hiping” The International Journal of Powder Metallurgy, Vol.35, No3, pp.31-35, (1999)
    19.陳永璋, ”鎳基超合金之材料相關知識”, 焊接與切割第10卷第4期, pp.31-40, 2000年
    20.S.D. Antolovich, R.W. Stustud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger and D.L. Klarstrom, ”Superalloys 1992”, The Minerals & Metal & Materials Soc., pp.23-32, (1992)
    21.C. Slama and M. Abdellaoui, ”Structural characterization of the aged Inconel 718”, Journal of Alloys and Compounds 306, pp.277-284, (2000)
    22.潘家君, ”鎳基超合金的焊接性”, 機械月刊第二十三卷第六期, pp.304-316, 1997年
    23.Donachie and Matthew J, ”Superalloys - A Technical Guide”, Bradley, Elihu F., ASM International, pp.47-91, (1988)
    24.M. Durand-Charre, ”The microstructure of Superalloys”, Gordon and Breach Science Publishers, (1997)
    25.Q. Chen, N. Kawagoishi and H. Nisitani, ”Evaluation of fatigue crack growth rate and life of Inconel 718 air room and elevated temperatures”, Materials Science and Engineering A277, pp.250-257, (2000)
    26.馬堅勇, ”鎳基合金之機械合成強化”, 國立台灣大學材料工程研究所碩士論文,1985年6月
    27.C.F. Miller, G.W. Simmons and R.P. Wei, ”Mechanism for Oxygen enhanced Crack Growth in Inconel 718”, Scripta Materiala Vol.44, pp.2405-2410, (2001)
    28.H. Song, S. Guo and Z. Hu, ”Benefical effect of Phosphorus on the Creep Behavior of Inconel 718”, Scripta Materialia Vol.41, No2, pp.215-219, (1999)
    29.陳冬樺, ”核三廠反應器偵檢閥金屬隔膜合金718應力腐蝕破裂抗性之研究”,國立清華大學核子工程與工程物理研究所碩士論文,1996年6月
    30.許堯淙, ”修正型Inconnel 718合金退火過程之研究”, 國立清華大學材料科學工程研究所碩士論文,1984年5月
    31.陳欽麟, ”超合金Inconnel 718之真空硬銲研究”, 國立交通大學機械工程研究所碩士論文,1994年6月
    32.H. Lu, X. Jia, K. Zhang and C. Yao, ”Fine-grained pretreatment process and super-plasticity for Inconel 718 superalloy”, Materials Science and Engineering A 326, pp.382-385, (2002)
    33.H. Xue, W. Lijun, X. Hui, L. Runguang, W. Shaogang and C. Zhonglin, ” Superlastic properties of Inconel 718”, Journal of Materials Processing Technology 137, pp.17-20, (2003)
    34.M. Yan, Z. Fan and M.J. Bevis, ”The Erosion behaviour of Inconel 718 in Molten A380 Alloy”, Scripta Mater.Vol.40, No11, pp.1255-1261, (1999)
    35.林朝蒼, ”熱處理對鑄造超合金Inconel 718之機械性質及顯微組織的影響”, 國立台灣大學材料工程研究所碩士論文,1985年6月
    36.M.D. Charre, ”The Microstructure of Superalloys”, Gordon and Breach Science Publishers, pp.29-45, (1997)
    37.T.S. Byun and K. Farrell, ”Tensile properties of Inconel 718 after low temperature neutron irradiation”, Journal of Nuclear Mater. 318, pp.292-299, (2003)
    38.李世欽、張世賢、何信弘等, ”熱均壓製程溫度對Inconel 718超合金性質之影響”, 粉末冶金會刊第29卷第4期, pp.279-287, 2004年11月
    39.G.A. Rao, M. Srinivas and D.S. Sarma, ”Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718”, Material Science and Engineerin A 418,pp.282-291, (2006)
    40.魏肇男, ”IN-713LC超合金細晶製程及機械性質之研究”, 國立交通大學材料科學與工程研究所碩士論文,1999年6月
    41.葛裕逢, ”鎳基超合金713LC及其γ´相成長之研究”, 國立成功大學礦冶及材料工程研究所碩士論文,1999年6月
    42.周介誠、張煥修, ”鑄造參數對IN-713LC葉片缺陷之影響”, 鑄工第55期, pp.1-10, 1987年12月
    43.周介誠、張煥修、陳寬裕, ”精密鑄造IN-713LC超合金製程-組織機械性質關係之研究”, 鑄工第59期, pp.1-10, 1988年12月
    44.N.D. Souza, H.B. Dong, M.G. Ardakani, B.A. Shollock, ”Solidification path in the Ni-base superalloy, IN713LC-quantitative correlation of last stage solidification”, Scripta Materiala Vol.53, pp.729-733, (2005)
    45.C.N. Wei, H.Y. Bor, C.Y. Ma and T.S. Lee, ” A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties”, Materials Chemistry and Physics 80, pp.89-93, (2003)
    46.魏肇男、薄慧雲等, ”微細鑄造及殼式離心鑄造對IN-713LC超合金顯微組織及機械性能之影響”, 鑄造工程學刊第31卷(第126期), pp.1-18, 2005年9月
    47.R.B. Li, M. Yao, W.C. Liu and X.C. He, ”Isolation and determination for δ、γ´、γ˝ phases in Inconel 718 alloy”, Scripta Materialia, Vol 46, pp.635-638, (2002)
    48.M. Gao and R.P. Wei, ”Grain boundary niobium carbides in Inconel 718 ”, Scripta Materialia, Vol.37, No12, pp.1843-1849, (1997)
    49.W.C. Liu, F.R. Xiao and M. Yao, “The influence of cold rolling on the precipitation of delta phase in Inconel 718 alloy”, Scripta Materialia Vol.37, No.1, pp.53-57, (1997)
    50.M. Gao and R.P. Wei, ”Grain Boundary γ˝ Precipitation and Niobium Segregation in Inconel 718”, Scripta Materialia Vol.32, No7, pp.987-990, (1995)
    51.M.K. Miller, S.S. Babu and M.G. Burke, ”Intragranular precipitation in alloy 718”, Materials Science and Engineering A 270, pp.14-18, (1999)
    52.楊俊彬, ”Inconel 718 GTA 銲接及其銲後熱處理之研究”, 國立台灣大學材料工程研究所碩士論文,1985年6月
    53.石漢正, ”鑄造超合金Inconel 718的破裂靭性及低週疲勞性質”, 國立台灣大學材料工程研究所碩士論文,1986年6月
    54.洪榆勝, ”HIP製程對鑄造超合金Inconnel 718之機械性質影響”, 國立成功大學材料科學與工程研究所碩士論文,2005年6月
    55.M. Petrence, K. Obrtlik, J. Polak, ” Inhomogeneous dislocation structure in fatigued Inconel 713LC superalloy at room and elevated temperatures”, Materials Science and Engineering A400-401, pp.485-488, (2005)
    56.S. Srinivas, K.S. Prasad, D. Gopikrishna and M.C. Pandey, ”Stress Rupture Property-Microstructure Correlation in Hot-Rolled Superalloy 718”, Materials Characterization 35, pp.93-98, (1995)
    57.Materials Handbook Ninth Edition Volume 4 Heat Treating, ”American Society for Metals”, pp. Nickel/755, (1981)
    58.S.C. Medeiros, Y.V. Prasad, W.G. Frazier and R. Srinivasan, ”Modeling Grain Size During Hot Deformation of IN718”, Scripta materialia 42, pp.17-23, (2000)
    59.W. Chen, M.C. Chaturvedi, ”On the mechanism of serrated deformation in aged Inconel 718”, Materials Science and Engineering A229, pp.163-168, (1997)
    60.洪榆勝、李世欽、張世賢、唐自標、何信弘、鄭榮瑞, ”均壓製程壓力對Inconel 718鎳基超合金性質之影響”, 粉末冶金會刊第30卷第1期, pp. 81- 88, 2005年2月
    61.張世賢、李世欽、唐自標、何信弘、鄭榮瑞, ”熱均壓溫度對鑄造718 Superalloy拉伸性質之影響”, 鑄造工程學刊,第31卷第4期(127期), pp.12-21,2005年12月
    62.S.S. Manson, ”Nonferrous Alloys”, Aerospace structural metals handbook, 1976, pp.1-22

    下載圖示 校內:立即公開
    校外:2006-07-19公開
    QR CODE