| 研究生: |
趙克傑 Chao, Ko-Chieh |
|---|---|
| 論文名稱: |
經顱直流電刺激結合腦波控制復健矯形手於中風病患之手部復健 Combined Transcranial Direct Current Stimulation with Brain-Computer-Interface to Control Orthotic Hands for Rehabilitation of Stroke Patients |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 中風復健 、腦機介面 、經顱直流電刺激 、共同空間型樣法 、大腦聯結 |
| 外文關鍵詞: | rehabilitation, brain computer interface (BCI), transcranial direct current stimulation (tDCS), common spatial pattern (CSP), brain connectivity |
| 相關次數: | 點閱:91 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當病患發生中風時,會造成運動功能障礙導致無法自主活動,部分原因係由於中風後導致左右半腦的神經網路不平衡所造成。近年有研究指出,利用經顱直流電刺激(transcranial direct current stimulation, tDCS)可在短期內改變大腦皮質的興奮度,使兩側大腦回復平衡狀態。本實驗室過去所研究之腦機介面(Brain-Computer-Interface, BCI)控制復健矯形手,可進行中風病患之動作想像訓練,並藉由視覺與本體感覺的回饋,達到視動整合的效果,促進活動相依大腦重塑(activity-dependent brain plasticity),並藉此增進其運動學習能力。
本研究以過去對於腦波分析及復健機器人之研究為基礎,結合經顱直流電刺激與腦機介面控制復健矯形手,期望藉由此兩種不同的大腦神經活化機制,能提升中風病患的復健成效。腦機介面識別系統部分使用共同空間型樣法(common spatial pattern, CSP),找出受測者對於想像左/右手動作時之差異較顯著的腦波特徵訊號,以提高事件相關腦波的辨識率。本研究共徵召6位常人與3位中風病人,實驗設計上採取隨機、雙盲、交叉試驗。
研究結果顯示,陽極電刺激能有效提升中風病患於腦機介面的控制成功率,但在反應時間上沒有明顯改善,而對於常人,似乎均沒有顯著效益,此外,藉由複雜網路分析大腦聯結變化與功能性磁振造影結果發現,受測者接受陽極電刺激介入後,神經結點聯結數增加,聯結訊號強度增強,聯結聚集程度較密集,由此推測陽極電刺激可能使大腦重塑,而由臨床量表的改善可以看出陽極電刺激結合腦機介面控制複健矯形手能強化中風病患的復健效果。
The aims of this study were to investigate the effects of combining tDCS with EEG-based BCI for orthotic hands control in chronic stroke patients and to compare the therapeutic effects of anodal-tDCS and sham-tDCS. 6 healthy individuals and 3 stroke patients participated in this randomized, double-blinded, crossover study. The testing protocol was approved by Internal Review Board of National Cheng Kung University Hospital. Each subject received two interventions, namely anodal-tDCS (a-tDCS) and sham-tDCS (s-tDCS) followed by BCI training. Due to technical difficulty, BCI control of hand orthosis could only be conducted after tDCS session. In the BCI training, imaginary thumb movement was utilized to trigger the motor of the orthosis and to extend fingers of the subject. The results showed significant improvements in accuracy of orthosis control via the BCI with a-tDCS compared with s-tDCS of stroke patients. But there were no evident differences between the two interventions in trigger time. The brain connectivity analysis revealed that subjects with a-tDCS intervention, had higher global degree, global coupling strength and clustering coefficient than s-tDCS intervention. The results concluded that anodal stimulation might improve implicit motor learning and facilitate the reconstruction of cortical circuits in stroke patients.
[1] G. Pfurtscheller and A. Aranibar. Event-Related Cortical Desynchronization Detected by Power Measurements of Scalp EEG. Electroencephalography and Clinical Neurophysiology, 42: 817-826, 1977.
[2] G. Pfurtscheller. Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalography and Clinical Neurophysiology, 43: 757-760, 1977.
[3] G. Pfurtscheller, F.H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110: 1842-1857, 1999.
[4] J. R. Wolpaw, D.J. McFarland, G.W. Neat and C.A. Forneris. An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78: 252-259, 1991.
[5] G. Pfurtscheller, D. Flotzinger and J. Kalcher, J. Brain-computer interface—A new communication device for handicapped persons. Journal of Microcomputer Application, 16: 293-299, 1993.
[6] J. R. Wolpaw, D.J. McFarland. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 101: 17849-17854; 2004.
[7] G. Pfurtscheller and C. Neuper. Motor Imagery and Direct Brain–Computer Communication. Proceedings of the IEEE, 89: 1123-1134, 2001.
[8] Fregni F, Boggio PS, Mansurc CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA and Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. NeuroReport, 16: 1551–1555, 2005.
[9] Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C and Cohen LG, Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128: 490–499, 2005.
[10] Hesse S, Waldner A, Mehrholz J, Tomelleri C, Pohl M and Werner C. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabilitation and Neural Repair, 25: 838-846, 2011.
[11] Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W and Kirker S.G.B. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25: 9 -15, 2007.
[12] Edwards DJ, Krebs HI, Rykman A, Zipse J, Thickbroom GW, Mastaglia FL, Pascual-Leone A and Volpe BT. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restorative Neurology and Neuroscience, 27:199-207, 2009.
[13] M. Ochi, S. Saeki, T. Oda, Y. Matsushima, and K. Hachisuka. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. Journal of Rehabilitation Medicine, 45: 137–140, 2013.
[14] 陳德祐, fMRI實驗設計與統計分析簡介, 國立成功大學心理系 (網頁資料)
[15] Wen-Chi Lo, Pei-Fang Tang. Introduction to Fugl-Meyer Assessment and its Applications for Stroke Rehabilitation. 物理治療, 25(4): 239–250, 2000.
[16] Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120(6):1161-1167, 2009.
[17] Bastani A, Jaberzadeh S, Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: A systematic review and meta-analysis, Clinical Neurophysiology 123: 644–657, 2012.
[18] 張文銓, 應用經顱直流電刺激強化腦機介面於中風病患手部復健, 國立成功大學機械工程學系碩士論文, 2014.
[19] Thomson, D.J., Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9): 1055-1096, 1982.
[20] Babadi, B. and E.N. Brown, A Review of Multitaper Spectral Analysis. Biomedical Engineering, IEEE Transactions on, 61(5): 1555-1564, 2014.
[21] 莊瑋智, 應用共同空間型樣法改善EEG控制矯形手於中風病患之復健, 國立成功大學機械工程學系碩士論文, 2013.
[22] 陳志瑋, 以mu波為基礎之大腦電腦介面之實現與強化, 國立成功大學機械工程學系博士論文, 2009.
[23] 詹政翰, 腦機介面控制機器人於中風病患手指復健及大腦聯結評估,國立成功大學機械工程學系碩士論文, 2012.
[24] 李阮耀, 腦機介面控制復健機械手於中風病患手部復健及功能性磁振造影, 國立成功大學機械工程學系碩士論文, 2011.
[25] B. Blankertz, G. Dornhege, M. Krauledat, and K.-R. Muller, The Berlin brain-computer interface: EEG-based communication without subject training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2): 147–152, 2006.
[26] J. J. Daly and J. R.Wolpaw, Brain-computer interfaces in neurological rehabilitation, Lancet Neurol., 7(11): 1032–1043, 2008.
[27] B.H. Dobkin, Brain–computer interface technology as a tool to augment
plasticity and outcomes for neurological rehabilitation, Physiol, 579(3): 637–642, 2007.
[28] G. Pfurscheller, C. Guger, G. Müller, G. Krausz, C. Neuper, Brain oscillations control hand orthosis in a tetraplegic, Neuroscience Letters 292: 211– 214, 2000.
[29] N Yozbatiran, L Der-Yeghiaian, SC Cramer, A Standardized Approach to Performing the Action Research Arm Test, Neurorehabilitation and Neural Repair, 22(1): 78-90, 2008.
[30] Schlaug, G., V. Renga, and D. Nair, Transcranial direct current stimulation in stroke recovery. Archives of Neurology, 65(12): 1571-1576, 2008.
[31] Jaberzadeh, S. and M. Zoghi, Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance. Basic and Clinical Neuroscience, 4(3): 75-83, 2013.
[32] Kaminski E, Hoff M, Sehm B, Taubert M, Conde V, Steele CJ, Villringer A, Ragert P, Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning. Neuroscience letters, 552:76-80, 2013.
[33] C. Neuper, R. Scherer, S. Wriessnegger, G. Pfurtscheller, Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clinical Neurophysiology, 120(2):239-247, 2009.
[34] http://antranik.org/functional-areas-of-the-cerebral-cortex/
[35] 陳志瑋, 以mu波為基礎之大腦電腦接面之實現與強化, 國立成功大學機械系博士論文, 2009.
[36] Koles, Z.J., M. Lazar, and S. Zhou, Spatial patterns underlying population differences in the background EEG. Brain Topography, 2(4): 275-284, 1990.
[37] Koles, Z.J., J.C. Lind, and P. Flor-Henry, Spatial patterns in the background EEG underlying mental disease in man. Electroencephalography and Clinical Neurophysiology, 91(5): 319-328, 1994.
[38] Krauledat, M., Tangermann, M., Blankertz, B., Müller, K.-R., Towards Zero Training for Brain-Computer Interfacing. PLoS ONE, 3(8):2967, 2008.
[39] Nitsche MA., Doemkes S., Karaköse T., Antal A., Liebetanz D., Lang N., Tergau F., and Paulus W., Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex, J Neurophysiol, 97(4):3109–17, 2007.
[40] Ardolino G, Bossi B, Barbieri S and Priori A., Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain, J Physiol, 568(2):653–663, 2005.