| 研究生: |
陳嘉偉 Chen, Chia-Wei |
|---|---|
| 論文名稱: |
矩形板於簡支邊界下的振動特性量測 Experimental Measurement of Vibration Characteristics of a Simply Supported Rectangular Plate |
| 指導教授: |
蘇于琪
Su, Yu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 簡支邊界 、矩形板 、壓電薄膜 、自然頻率 |
| 外文關鍵詞: | Simply-Supported Boundary, Rectangular Plate, PVDF, Natural Frequency |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在提出一種新型簡支邊界實驗模擬裝置,用於量測矩形板的振動特性。此裝置主要透過黏著劑提供板之支撐力,且允許板邊緣轉動,並在漿糊、白膠、中性矽利康、水性矽利康四種常見的黏著劑下進行實驗探討。結果顯示使用中性矽利康時,自然頻率實驗值與模擬值誤差最小,其固化時間長,阻尼效應低,在實驗重複性、時效性及準確性皆有優異之表現,為目前最佳之選擇。實驗採用PVDF與應變計量測板的振動特性,我們發現 PVDF的靈敏度優於應變計。此外,本研究亦以鋼珠敲擊懸臂梁搭配理論計算的方式反算材料參數,此方法為未知材料的性質提供一簡潔快速之估算。
This study proposes a novel experimental setup with simply supported boundaries for measuring the vibrational characteristics of rectangular plates. The device primarily uses adhesives to provide support for the plate, allowing rotation at the plate's edges. Experiments were conducted using four common adhesives: starch starch paste, white glue, neutral silicone, and acrylic silicone.
Results showed that when using neutral silicone, the discrepancy between experimental and simulated natural frequencies was consistently less than 2.5%. Neutral silicone's long curing time and low damping effect resulted in excellent performance in terms of experimental repeatability, timeliness, and accuracy, making it the optimal choice among the tested adhesives.
The study employed PVDF (polyvinylidene fluoride) sensors and strain gauges to measure the plate's vibrational characteristics. We found that the sensitivity of PVDF sensors was superior to that of strain gauges. Furthermore, this research also presents a simple and rapid method for estimating material parameters of unknown materials by inversely calculating them from the theoretical analysis of a cantilever beam impacted by a steel ball.
[1] Kawai, H. (1969). The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics, 8(7), 975-975.
[2] Sekhar, M. C., Veena, E., Kumar, N. S., Naidu, K. C. B., Mallikarjuna, A., and Basha, D. B. (2023). A review on piezoelectric materials and their applications. Crystal Research and Technology, 58(2), 2200130.
[3] Xin, Y., Sun, H., Tian, H., Guo, C., Li, X., Wang, S., and Wang, C. (2016). The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: A brief review. Ferroelectrics, 502(1), 28–42.
[4] Benech, P., Chambered, E., and Monllor, C. (1996). Acceleration measurement using PVDF. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43(5), 838-843.
[5] Matsumoto, E., Biwa, S. K. Y. K., Katsumi, K., Omoto, Y., Iguchi, K., and Shibata, T. (2004). Surface strain sensing with polymer piezoelectric film. NDT and E International, 37(1), 57-64.
[6] Dung, C. V. and Sasaki, E. (2016). Numerical simulation of output response of PVDF sensor attached on a cantilever beam subjected to impact loading. Sensors, 16(5), 601.
[7] 劉泓嶔,PVDF感測器應用於結構系統之動態量測能力探討,國立臺灣大學工學院機械工程學研究所碩士論文,2011年。
[8] Meng, Y. and Yi, W. (2011). Application of a PVDF-based stress gauge in determining dynamic stress–strain curves of concrete under impact testing. Smart Materials and Structures, 20(6), 065004.
[9] Ma, C. C., Huang, Y. H., and Pan, S. Y. (2012). Investigation of the transient behavior of a cantilever beam using PVDF sensors. Sensors, 12(2), 2088-2117.
[10] 何俊頡,PVDF薄膜應用於矩形平板結構的動態響應與波源歷時之數值分析與實驗量測,國立臺灣大學工學院機械工程學研究所碩士論文,2022年。
[11] Hearmon, R. F. S. (1946). The fundamental frequency of vibration of rectangular wood and plywood plates. Proceedings of the Physical Society, 58(1), 78.
[12] Dumond, P., Monette, D., Alladkani, F., Akl, J., and Chikhaoui, I. (2019). Simplified setup for the vibration study of plates with simply-supported boundary conditions. MethodsX, 6, 2106-2117.
[13] Ashton, J. E. and Love, T. S. (1969). Experimental study of the stability of composite plates. Journal of Composite Materials, 3(2), 230-242.
[14] Hendricks, D. R., Johnson, W. R., Sommerfeldt, S. D., and Blotter, J. D. (2014). Experimental active structural acoustic control of simply supported plates using a weighted sum of spatial gradients. The Journal of the Acoustical Society of America, 136(5), 2598-2608.
[15] Ochs, J. B. and Snowdon, J. C. (1975). Transmissibility across simply supported thin plates. I. Rectangular and square plates with and without damping layers. The Journal of the Acoustical Society of America, 58(4), 832-840.
[16] Champoux, Y., Brunet, S., and Berry, A. (1996). On the construction of a simply supported rectangular plate for noise and vibration studies. Experimental Techniques, 20, 24-26.
[17] Lucas, G. and Kessissoglou, N. J. (2006). Mid-Frequency modelling of the vibroacoustic responses of structures with uncertainties. Proceedings of Acoustics Christchurch, 20-22.
[18] Dietrich, L., Kawahara, W., and Phillips, A. (1978). An experimental study of plastic buckling of a simply supported plate under edge thrusts. Acta Mechanica, 29(1), 257-267.
[19] Bambach, M. R. and Rasmussen, K. J. (2004). Experimental techniques for testing unstiffened plates in compression and bending. Experimental Mechanics, 44, 91-96.
[20] Zhong, Z., Liu, A., Pi, Y. L., Deng, J., Lu, H., and Li, S. (2019). Analytical and experimental studies on dynamic instability of simply supported rectangular plates with arbitrary concentrated masses. Engineering Structures, 196, 109288.
[21] Barnard, A. R. and Hambric, S. A. (2014). Development of a set of structural acoustic teaching demonstrations using a simply-supported plate. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 248(1), 641-647. Institute of Noise Control Engineering.
[22] ASTM E8/E8M-24. (2024). Standard test methods for tension testing of metallic materials. West Conshohocken, PA: ASTM International.
[23] Kushibiki, J., Ueda, T., and Chubachi, N. (1987). Determination of elastic constants by LFB acoustic microscope. In IEEE 1987 Ultrasonics Symposium, 1987, 817-821. Tohoku University.
[24] Lee, Y. C., Kim, J. O., and Achenbach, J. D. (1995). Acoustic microscopy measurement of elastic constants and mass density. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42(2), 253-264.
[25] Chung, C. H. and Lee, Y. C. (2009). Nondestructive determination of elastic constants of thin isotropic plates based on poly (vinylidene fluoride–trifluoroethylene) copolymer ultrasound focusing transducers and Lamb wave measurements. Japanese Journal of Applied Physics, 48(4R), 046506.
[26] 劉育翔,何展效,施學競,光學式超聲波偵測與材料楊氏係數量測,中華民國振動與噪音工程學會論文集,337-343,2005年。
[27] Deobald, L. R. and Gibson, R. F. (1988). Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique. Journal of Sound and Vibration, 124(2), 269-283.
[28] Liu, G. R., Ma, W. B., and Han, X. (2002). An inverse procedure for determination of material constants of composite laminates using elastic waves. Computer Methods in Applied Mechanics and Engineering, 191(33), 3543-3554.
[29] 簡揚開,利用板殼振動理論搭配機器學習與遺傳演算法反算積層製造結構之正交性彈性模數,國立臺灣大學工學院機械工程學研究所碩士論文,2023年。
[30] 詹易勳,波源量測與應變感測器的初步探討,國立成功大學土木工程學系碩士論文,2023年。
[31] Liao, Y., Duan, F., Zhang, H., Lu, Y., Zeng, Z., Liu, M., Xu, H., Gao, C., Zhou, L. M., Jin, H., Zhang, Z. and Su, Z. (2019). Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon, 143, 743-751.
[32] 吳冠宏,矩形彈性板的暫態量測與振動特性探討,國立成功大學土木工程學系碩士論文,2024年。