簡易檢索 / 詳目顯示

研究生: 鍾官衡
Jhong, Guan-Heng
論文名稱: 椎體支撐系統搭配後側固定於腰椎壓迫性骨折之生物力學分析
Biomechanical Analysis of a Vertebral Augmentation System with a Posterior Fixation in Lumbar Compression Fractures
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
中文關鍵詞: 腰椎壓迫性骨折椎體支撐系統椎體後側固定有限元素分析
外文關鍵詞: Lumbar compression fracture, vertebral augmentation system, posterior fixation, finite element
相關次數: 點閱:53下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上對於脊椎壓迫性骨折之手術方式為使用椎體成形術式來處理,並且使用脊椎後側固定術式以確保足夠之穩定度。使用氣球或椎體支撐系統擴張無法回復原本之椎體高度,文獻指出約有20.5~29.8%的椎體高度喪失。研究指出使用鈦合金椎體矯正支撐系統對於椎體高度之重建效果優於傳統之氣球擴張術,但是,對於不同椎體高度重建目前並無相關的力學研究。因此,本研究之目的為使用有限元素法比較椎體三節骨折後,在椎體高度完整重建下,使用骨水泥加上鈦合金椎體矯正支撐系統或單純骨水泥兩種椎體固定方式,搭配不同脊椎後側融合術式(傳統融合固定與動態穩定),對於在椎體高度不完整重建下,使用骨水泥搭配不同脊椎後側融合術式(傳統融合固定與動態穩定)之生物力學效應亦在本研究中一併探討。
    本研究先建立一完整之腰椎實體模型,並在第三節腰椎作為植入節,參考Wedge骨折術後修復高度100%及70%建立壓迫性骨折修復後模型,搭配單純骨水泥或SpineJack加骨水泥搭配傳統融合固定與動態穩定之不同脊椎後側融合術式。本研究探討之負載包含400N之軸向負載模擬體重、10Nm之彎曲負載模擬前屈後仰、側彎及旋轉動作,計算每一節椎間盤之運動範圍、最大位移量與應力分佈及後側骨元件之應力分佈做為結構穩定度之指標。
    結果顯示骨水泥或SpineJack加骨水泥於植入節支撐骨折椎體與正常腰椎在相同的附載條件有類似的結果。當植入節高度未完全修復時,於後仰運動時骨折椎體上方椎間盤纖維環基質的最大應力值增加了238%;纖維環基質之正常腰椎應力0.93MPa與未完全修復高度腰椎應力2.4MPa。當使用脊椎後側融合術式後可以降低固定節數之運動範圍。在研究中,建議在椎體成形術中盡可能完全修復高度,作為治療腰椎骨折指標。

    Traditional surgical approach for vertebral compression fractures uses vertebroplasty along with the posterior fixation to ensure adequate stability. After surgery, the vertebral height in general cannot be fully restored by a balloon or vertebral augmentation system (SpineJack system) by kyphoplasty. Literatures indicated that about 20% to 30% of the vertebral height is lost. Clinical study has shown that using the SpineJack system for the reconstruction of vertebral body height is better than using balloon kyphoplasty. However, for incomplete vertebral body height reconstructions, there is no relevant mechanical research. The purpose of this study was to compare the biomechanical effects, with finite element simulation, on the third lumbar vertebral compression fracture with complete and incomplete height restorations. Different augmentation approaches were considered: with bone cement alone and bone cement with the SpineJack, also two posterior fixations, ReBorn System and Bioflex system, were evaluated.
    In this study, a intact complete, first to fifth, lumbar computer model was created. A wedge (compression) fracture was then induced at the third lumbar to generated the fractured model. Models with complete, 100%, and incomplete, 70%, restorations of the fractured vertebral body height were then created by various augmentation approaches. For the fractured vertebral body restorations two approaches were simulated: bone cement alone and bone cement with SpineJack. For posterior fixation, three approaches were modeled: without posterior fixation, ReBorn System and the Bioflex system. A pressure load of 400N to simulate body weight was applied to the most superior surface of this lumbar spine. Moment load of 10 N-m in four directions, flexion, extension, lateral bending, and axial rotation, were applied to the lumbar spine. The range of motion of vertical, deformation and stress of intervertebral disc and stress on the posterior element were obtained as indices for evaluation.
    The results showed that restoration height was the key factor, whether the bone cement alone or with a SpineJack was used in the restored body. A fully restored body height would have a similar mechanical results with the intact lumbar, compared to the insufficient restored spine. This was most obvious at the second intervertebral disc in which the maximum equivalent stress of intact lumbar ground substance was 0.93MPa, under extension, while the maximum equivalent stress of incompletely restoration ground substance was 2.4MPa, a 238% increasing. When the posterior instrumentation was applied the range of motion was reduced as expected.
    In summary, better spinal stability was identified in vertebral body with fully restored height. And this might be the lumbar curvature change due to insufficient body height restoration.

    Abstract I 中文摘要 III 誌謝 IV Contents V List of Tables VII List of Figures VIII Chapter 1. General Introduction 1 1.1 Anatomy of the Lumbar 1 1.2 Kinematics of the Lumbar During Spine Motion 2 1.3 Epidemiology of Osteoporosis and Lumbar Compression Fractures 3 1.4 Treatment of Lumbar Compression Fractures 4 1.4.1 Percutaneous vertebroplasty with bone cement 5 1.4.2 Balloon kyphoplasty 5 1.4.3 SpineJack system 6 1.4.4 Kyphoplasty with Posterior Fixation 7 1.4.5 Degeneration of adjacent segments 8 1.4.6 Vertebral height reduction 10 1.5 Literature Reviews 12 1.5.1 Review of Clinical Studies 12 1.5.2 Review of Mechanical Studies 14 1.6 Motivation and Objectives 17 Chapter 2. Material and Methods 18 2.1 Solid modeling 18 2.2 Finite Element modeling 22 2.2.1 Finite element model 22 2.2.2 Material properties 23 2.2.3 Validation and convergence test 25 2.2.4 Boundary conditions 26 2.3 Index 27 Chapter 3. Results 31 3.1 Validation and convergence test 31 3.2 Results of the lumbar model 39 3.2.1 Equivalent stress of the lumbar disc 39 3.2.2 Total Deformation of disc high in the Lumbar Model 47 3.2.3 Range of motions 53 3.3 Results of the Equivalent Stress of the Lumbar implant 59 Chapter 4. Discussion 63 Chapter 5. Conclusion 70 References 71

    Altay, M., B. Ozkurt, C. N. Aktekin, A. M. Ozturk, Ö. Dogan and A. Y. Tabak (2007). "Treatment of unstable thoracolumbar junction burst fractures with short-or long-segment posterior fixation in magerl type a fractures." European Spine Journal 16(8): 1145-1155.
    Bastian, L. (2012). "Balloon Kyphoplasty in the Treatment of Vertebral Compression Fractures in Cancer Patients." Journal-Balloon Kyphoplasty in the Treatment of Vertebral Compression Fractures in Cancer Patients.
    Bellabarba, C., C. Fisher, J. R. Chapman, J. R. Dettori and D. C. Norvell (2010). "Does early fracture fixation of thoracolumbar spine fractures decrease morbidity or mortality?" Spine 35(9S): S138-S145.
    Bogduk, N. (2022). Clinical and Radiological Anatomy of the Lumbar Spine-E-Book, Elsevier Health Sciences.
    Borgen, T. T., Å. Bjørnerem, L. B. Solberg, C. Andreasen, C. Brunborg, M.-B. Stenbro, L. M. Hübschle, A. Froholdt, W. Figved and E. M. Apalset (2019). "High prevalence of vertebral fractures and low trabecular bone score in patients with fragility fractures: a cross-sectional sub-study of NoFRACT." Bone 122: 14-21.
    Bostelmann, R., A. Keiler, H. J. Steiger, A. Scholz, J. F. Cornelius and W. Schmoelz (2017). "Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading." European Spine Journal 26(1): 181-188.
    Chang, C.-W., Y.-H. Chung, C.-J. Chang, Y.-N. Chen, C.-T. Li, C.-H. Chang and Y.-T. Peng (2020). "Computational comparison of bone cement and poly aryl-ether-ether-ketone spacer in single-segment posterior lumbar interbody fusion: a pilot study." Physical and Engineering Sciences in Medicine 43(1): 163-173.
    Chen, C.-S., C.-K. Cheng, C.-L. Liu and W.-H. Lo (2001). "Stress analysis of the disc adjacent to interbody fusion in lumbar spine." Medical engineering & physics 23(7): 485-493.
    Chien, C.-Y., Y.-J. Kuo, S.-C. Lin, W.-H. Chuang and Y.-P. Luh (2014). "Kinematic and mechanical comparisons of lumbar hybrid fixation using Dynesys and Cosmic systems." Spine 39(15): E878-E884.
    Diamond, T. H., B. Champion and W. A. Clark (2003). "Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy." The American journal of medicine 114(4): 257-265.
    Dreischarf, M., A. Rohlmann, G. Bergmann and T. Zander (2011). "Optimised loads for the simulation of axial rotation in the lumbar spine." Journal of Biomechanics 44(12): 2323-2327.
    Dreischarf, M., A. Rohlmann, G. Bergmann and T. Zander (2012). "Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine." Medical Engineering & Physics 34(6): 777-780.
    Dreischarf, M., T. Zander, A. Shirazi-Adl, C. Puttlitz, C. Adam, C. Chen, V. Goel, A. Kiapour, Y. Kim and K. Labus (2014). "Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together." Journal of biomechanics 47(8): 1757-1766.
    Edidin, A. A., K. L. Ong, E. Lau and S. M. Kurtz (2015). "Morbidity and mortality after vertebral fractures: comparison of vertebral augmentation and nonoperative management in the Medicare population." Spine 40(15): 1228-1241.
    Elmasry, S. S., S. S. Asfour and F. Travascio (2018). "Finite element study to evaluate the biomechanical performance of the spine after augmenting percutaneous pedicle screw fixation with kyphoplasty in the treatment of burst fractures." Journal of biomechanical engineering 140(6): 061005.
    Galibert, P., H. Deramond, P. Rosat and D. Le Gars (1987). "Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty." Neuro-chirurgie 33(2): 166-168.
    Genant, H. K., C. Y. Wu, C. Van Kuijk and M. C. Nevitt (1993). "Vertebral fracture assessment using a semiquantitative technique." Journal of bone and mineral research 8(9): 1137-1148.
    Guven, O., B. Kocaoglu, M. Bezer, N. Aydin and U. Nalbantoglu (2009). "The use of screw at the fracture level in the treatment of thoracolumbar burst fractures." Clinical Spine Surgery 22(6): 417-421.
    Harrop, J. S., J. A. Youssef, M. Maltenfort, P. Vorwald, P. Jabbour, C. M. Bono, N. Goldfarb, A. R. Vaccaro and A. S. Hilibrand (2008). "Lumbar adjacent segment degeneration and disease after arthrodesis and total disc arthroplasty." Spine 33(15): 1701-1707.
    Hashimoto, K., T. Aizawa, H. Kanno and E. Itoi (2019). "Adjacent segment degeneration after fusion spinal surgery—a systematic review." International orthopaedics 43(4): 987-993.
    Hayashi, T., T. Maeda, M. Masuda, T. Ueta and K. Shiba (2016). "Morphology of the injured posterior wall causing spinal canal encroachment in osteoporotic vertebral fractures." The Spine Journal 16(8): 946-950.
    Hinde, K., J. Maingard, J. A. Hirsch, K. Phan, H. Asadi and R. V. Chandra (2020). "Mortality outcomes of vertebral augmentation (vertebroplasty and/or balloon kyphoplasty) for osteoporotic vertebral compression fractures: a systematic review and meta-analysis." Radiology 295(1): 96-103.
    Hirsch, C. (1955). "The reaction of intervertebral discs to compression forces." JBJS 37(6): 1188-1196.
    Hsieh, Y.-Y., Y.-J. Kuo, C.-H. Chen, L.-C. Wu, C.-J. Chiang and C.-L. Lin (2020). "Biomechanical assessment of vertebroplasty combined with cement-augmented screw fixation for lumbar burst fractures: A finite element analysis." Applied Sciences 10(6): 2133.
    Imai, N., N. Endo, T. Hoshino, K. Suda, D. Miyasaka and T. Ito (2016). "Mortality after hip fracture with vertebral compression fracture is poor." Journal of bone and mineral metabolism 34(1): 51-54.
    Jennings, J. W. (2020). Vertebral augmentation is more than just pain palliation, it is about improved mortality, Radiological Society of North America. 295: 104-105.
    Jensen, G. M. (1980). "Biomechanics of the lumbar intervertebral disk: a review." Physical therapy 60(6): 765-773.
    Jhong, G.-H., Y.-H. Chung, C.-T. Li, Y.-N. Chen, C.-W. Chang and C.-H. Chang (2022). "Numerical Comparison of Restored Vertebral Body Height after Incomplete Burst Fracture of the Lumbar Spine." Journal of Personalized Medicine 12(2): 253.
    Kanis, J. A. (1994). "Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report." Osteoporosis international 4(6): 368-381.
    Ke, W., B. Wang, W. Hua, S. Lu, X. Li and C. Yang (2020). "Biomechanical evaluation of the sacral slope on the adjacent segment in transforaminal lumbar interbody fusion: A finite element analysis." World Neurosurgery 133: e84-e88.
    Kim, S.-I., K.-Y. Ha, Y.-S. Cho, K.-W. Kim and I.-S. Oh (2018). "Delayed height loss after kyphoplasty in osteoporotic vertebral fracture with severe collapse: comparison with vertebroplasty." World Neurosurgery 119: e580-e588.
    Krüger, A., G. Baroud, D. Noriega, J. Figiel, C. Dorschel, S. Ruchholtz and L. Oberkircher (2013). "Height restoration and maintenance after treating unstable osteoporotic vertebral compression fractures by cement augmentation is dependent on the cement volume used." Clinical biomechanics 28(7): 725-730.
    Krüger, A., L. Oberkircher, J. Figiel, F. Floßdorf, F. Bolzinger, D. C. Noriega and S. Ruchholtz (2015). "Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study." The Spine Journal 15(5): 1092-1098.
    Lee, Y.-K., S. Jang, H. Lee, C. Park, Y.-C. Ha and D.-Y. Kim (2012). "Mortality after vertebral fracture in Korea." Osteoporosis International 23(7): 1859-1865.
    Lieberman, I., S. Dudeney, M.-K. Reinhardt and G. Bell (2001). "Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures." spine 26(14): 1631-1637.
    Lu, Y. M., W. C. Hutton and V. M. Gharpuray (1996). "Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model." Spine 21(22): 2570-2579.
    Martín-Valero, R., A. I. Cuesta-Vargas and M. T. Labajos-Manzanares (2013). "Effectiveness of the physical activity promotion programme on the quality of life and the cardiopulmonary function for inactive people: randomized controlled trial." BMC Public Health 13(1): 1-7.
    Maruo, K., T. Moriyama, T. Tachibana, S. Inoue, F. Arizumi, K. Kusuyama and S. Yoshiya (2017). "Prognosis and adjacent segment disease after lumbar spinal fusion surgery for destructive spondyloarthropathy in long-term hemodialysis patients." Journal of Orthopaedic Science 22(2): 248-253.
    Mashaly, H., E. E. Paschel, N. K. Khattar, E. Goldschmidt and P. C. Gerszten (2016). "Posterior lumbar dynamic stabilization instead of arthrodesis for symptomatic adjacent-segment degenerative stenosis: description of a novel technique." Neurosurgical focus 40(1): E5.
    Michael, A. P., M. W. Weber, K. R. Delfino and V. Ganapathy (2019). "Adjacent-segment disease following two-level axial lumbar interbody fusion." Journal of Neurosurgery: Spine 31(2): 209-216.
    Miyagi, M., O. Ikeda, S. Ohtori, Y. Tsuneizumi, Y. Someya, M. Shibayama, Y. Ogawa, G. Inoue, S. Orita and Y. Eguchi (2013). "Additional decompression at adjacent segments leads to adjacent segment degeneration after PLIF." European Spine Journal 22(8): 1877-1883.
    Modi, H. N., K. J. Chung, I. W. Seo, H. S. Yoon, J. H. Hwang, H. K. Kim, K. C. Noh and J. H. Yoo (2009). "Two levels above and one level below pedicle screw fixation for the treatment of unstable thoracolumbar fracture with partial or intact neurology." Journal of orthopaedic surgery and research 4(1): 1-6.
    Mooney, J. H., J. Amburgy, M. Self, B. S. Agee, L. Schoel, P. R. Pritchard and M. R. Chambers (2019). "Vertebral height restoration following kyphoplasty." Journal of Spine Surgery 5(2): 194.
    Natarajan, R. N. and G. B. Andersson (2017). "Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease." Journal of Orthopaedic Research 35(1): 123-130.
    Neumann, P., T. Keller, L. Ekström and T. Hansson (1994). "Effect of strain rate and bone mineral on the structural properties of the human anterior longitudinal ligament." Spine 19(2): 205-211.
    Noriega, D., S. Marcia, N. Theumann, B. Blondel, A. Simon, F. Hassel, G. Maestretti, A. Petit, P. A. Weidle and A. G. Mandly (2019). "A prospective, international, randomized, noninferiority study comparing an implantable titanium vertebral augmentation device versus balloon kyphoplasty in the reduction of vertebral compression fractures (SAKOS study)." The Spine Journal 19(11): 1782-1795.
    Noriega, D., R. Ramajo, I. Lite, B. Toribio, R. Corredera, F. Ardura and A. Krüger (2016). "Safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study." Osteoporosis International 27(6): 2047-2055.
    Noriega, D., F. Rodrίguez-Monsalve, R. Ramajo, I. Sánchez-Lite, B. Toribio and F. Ardura (2019). "Long-term safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study." Osteoporosis International 30(3): 637-645.
    Noriega, D. C., S. Marcia, F. Ardura, I. S. Lite, M. Marras and L. Saba (2016). "Diffusion-weighted MRI assessment of adjacent disc degeneration after thoracolumbar vertebral fractures." Cardiovascular and interventional radiology 39(9): 1306-1314.
    Pachowsky, M. L., A. Kleyer, L. Wegener, A. Langenbach, D. Simon, R. Janka, M. May and G. H. Welsch (2020). "Quantitative T2 mapping shows increased degeneration in adjacent intervertebral discs following kyphoplasty." Cartilage 11(2): 152-159.
    Paik, H., A. E. Dmitriev, R. A. Lehman Jr, R. E. Gaume, D. V. Ambati, D. G. Kang and L. G. Lenke (2012). "The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine." The Spine Journal 12(5): 417-424.
    Panjabi, M. M., T. Oxland, I. Yamamoto and J. J. Crisco (1994). "Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves." JBJS 76(3): 413-424.
    Perez-Higueras, A., L. Alvarez, R. Rossi, D. Quinones and I. Al-Assir (2002). "Percutaneous vertebroplasty: long-term clinical and radiological outcome." Neuroradiology 44(11): 950-954.
    Pintar, F. A., N. Yoganandan, T. Myers, A. Elhagediab and A. Sances Jr (1992). "Biomechanical properties of human lumbar spine ligaments." Journal of biomechanics 25(11): 1351-1356.
    Polikeit, A., S. J. Ferguson, L. P. Nolte and T. E. Orr (2003). "Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis." European spine journal 12(4): 413-420.
    Polikeit, A., L. P. Nolte and S. J. Ferguson (2003). "The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis." Spine 28(10): 991-996.
    Premat, K., S. Vande Perre, É. Cormier, E. Shotar, V. Degos, L. Morardet, C. Fargeot, F. Clarençon and J. Chiras (2018). "Vertebral augmentation with the SpineJack® in chronic vertebral compression fractures with major kyphosis." European Radiology 28(12): 4985-4991.
    Rohlmann, A., T. Zander, M. Rao and G. Bergmann (2009). "Realistic loading conditions for upper body bending." Journal of Biomechanics 42(7): 884-890.
    Rotter, R., L. Schmitt, P. Gierer, K.-P. Schmitz, D. Noriega, T. Mittlmeier, P.-J. Meeder and H. Martin (2015). "Minimum cement volume required in vertebral body augmentation—a biomechanical study comparing the permanent SpineJack device and balloon kyphoplasty in traumatic fracture." Clinical Biomechanics 30(7): 720-725.
    Sacks, D., B. Baxter, B. C. Campbell, J. S. Carpenter, C. Cognard, D. Dippel, M. Eesa, U. Fischer and K. Hausegger (2018). "Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke." International journal of stroke 13(6): 612-632.
    Sharma, M., N. A. Langrana and J. Rodriguez (1995). "Role of ligaments and facets in lumbar spinal stability." Spine 20(8): 887-900.
    Shen, G., N. Wu, N. Zhang, Z. Jin, J. Xu and G. Yin (2010). "A prospective comparative study of kyphoplasty using the Jack vertebral dilator and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures." The Journal of Bone and Joint Surgery. British volume 92(9): 1282-1288.
    Shirazi-Adl, S. A., S. C. Shrivastava and A. M. Ahmed (1984). "Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study." Spine 9(2): 120-134.
    Smit, T. H., A. Odgaard and E. Schneider (1997). "Structure and function of vertebral trabecular bone." Spine 22(24): 2823-2833.
    Spiegl, U. J., C. Anemüller, J.-S. Jarvers, N. von der Höh, C. Josten and C.-E. Heyde (2019). "Hybrid stabilization of unstable osteoporotic thoracolumbar vertebral body fractures: clinical and radiological outcome after a mean of 4 years." European Spine Journal 28(5): 1130-1137.
    Spiegl, U. J., B. M. Devitt, I. Kasivskiy, J.-S. Jarvers, C. Josten, C.-E. Heyde and H. M. Fakler (2018). "Comparison of combined posterior and anterior spondylodesis versus hybrid stabilization in unstable burst fractures at the thoracolumbar spine in patients between 60 and 70 years of age." Archives of Orthopaedic and Trauma Surgery 138(10): 1407-1414.
    Takata, S. and N. Yasui (2001). "Disuse osteoporosis." Journal of Medical Investigation 48(3/4): 147-156.
    Tan, J.-S., S. Singh, Q.-A. Zhu, M. F. Dvorak, C. G. Fisher and T. R. Oxland (2008). "The effect of cement augmentation and extension of posterior instrumentation on stabilization and adjacent level effects in the elderly spine." Spine 33(25): 2728-2740.
    Wang, S., L. Wang, Y. Wang, C. Du, M. Zhang and Y. Fan (2017). "Biomechanical analysis of combining head-down tilt traction with vibration for different grades of degeneration of the lumbar spine." Medical Engineering & Physics 39: 83-93.
    Wang, T., F. Si, L. Zang, N. Fan, S. Yuan, P. Du, Q. Wu, A. Wang and X. Lu (2022). "Radiographic adjacent segment degeneration and risk factors for osteoporotic vertebral compression fractures treated with percutaneous kyphoplasty." International Orthopaedics: 1-10.
    WHITE III, A. (1990). "panjabi Mm." Clinical biomechanics of the spine.
    Wu, Y., C.-H. Chen, F.-Y. Tsuang, Y.-C. Lin, C.-J. Chiang and Y.-J. Kuo (2019). "The stability of long-segment and short-segment fixation for treating severe burst fractures at the thoracolumbar junction in osteoporotic bone: a finite element analysis." PloS one 14(2): e0211676.
    Yamamoto, I., M. M. Panjabi, T. Crisco and T. Oxland (1989). "Three-dimensional movements of the whole lumbar spine and lumbosacral joint." Spine 14(11): 1256-1260.
    Yang, P., Y. Zhang, H.-w. Ding, J. Liu, L.-q. Ye, J. Xiao, Q. Tu, T. Yang, F. Wang and G.-g. Sun (2016). "Pedicle screw fixation with kyphoplasty decreases the fracture risk of the treated and adjacent non-treated vertebral bodies: a finite element analysis." Journal of Huazhong University of Science and Technology [Medical Sciences] 36(6): 887-894.
    Zhao, W.-T., D.-P. Qin, X.-G. Zhang, Z.-P. Wang and Z. Tong (2018). "Biomechanical effects of different vertebral heights after augmentation of osteoporotic vertebral compression fracture: a three-dimensional finite element analysis." Journal of Orthopaedic Surgery and Research 13(1): 1-10.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE