簡易檢索 / 詳目顯示

研究生: 南宮乖
Nainggolan, Paul Fernando Haposan
論文名稱: bHLH2 轉錄因子對水稻花粉發育之探討
Role of bHLH2 in Rice Pollen Development
指導教授: 郭瑋君
Guo, Woei-Jiun
共同指導教授: 辜瑞雪
Ko, Swee-Suak
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 72
中文關鍵詞: 水稻轉錄因子bHLH雄性不孕花粉發育絨氈層細胞程序化凋亡
外文關鍵詞: Oryza sativa, bHLH, male sterility, pollen development, tapetal PCD
相關次數: 點閱:201下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    無論是在植物或動物的染色體中,bHLH轉錄因子都是很大的基因家族。bHLHs轉錄因子的功能通常是參與調控代謝作用以及組織的發育。像是UDT1 (bHLH164)、TDR (bHLH5) 、EAT1 (bHLH141) 、bHLH142 (TIP2) 這些轉錄因子,在花粉發育過程中扮演極重要的角色。轉錄因子 bHLH2的基因註解為「與ICE1 相近的轉錄因子」。ICE1轉錄因子已被證實具有抗逆境的功能,但目前並無參花粉發育之報導。故本研究就bHLH2 可能參與花粉發育做進一步探討。
    qRT-PCR的結果指出bHLH2基因表達在葉鞘、幼穂、 花葯、子房及種子中。進一步利用原位雜交技術發現 bHLH2 基因表達在花葯發育早期之花粉壁和減數分裂細胞中;且該基因持續表達在子房發育過程中的心皮及胚珠。從基因表達模式指出bHLH2可能涉及水稻雄性和雌配子體的發育。藉由韓國T-DNA突變系 (bhlh2)進行詳細的研究。剔除了bHLH2 的突變系的花粉為部份雄不稔且結實不良。基因分型證實T-DNA插入在bHLH2 基因的第3個外顯子。Southern blot數據顯示,該突變系分離成具有一個或三個T-DNA插入的個體,惟插入一個T-DNA的純合子用於進一步的分生研究。TUNEL測定發現bhlh2突變體有延長絨氈層細胞程序化凋亡(PCD)的現象。一些RNAi-bHLH2轉基因水稻明顯降低了bHLH2 基因全長的表達量,且造成不結實的情形很嚴重。在小孢子期,控制PCD標記基因(AP37、AP25 和CP1)和花粉脂質生物合成標記基因(MS2、CYP704B2 和C6)在RNAi-bHLH2轉殖株明顯減少基因的表達量。我們推測T-DNA突變系插在bHLH2下游,具有截短的bHLH2蛋白(保留完整的bHLH結構域),相較於RNAi-bHLH2轉殖株有更好的稔實度,意味著bHLH domain之重要。TRIM pTag8激活之突變系,持續增加bHLH2 基因的表達量,但其花粉活力佳。總而言之,本研究發現bHLH2有參與水稻的花粉發育。

    Abstract
    The basic helix loop helix (bHLH) transcription factors (TFs) is a large gene family and diverse in animal and plant genomes. Consistent with functions of TFs, bHLHs play many important roles in regulating metabolism and tissues development. bHLH TFs such as UDT1 (bHLH164), TDR (bHLH5), EAT1 (bHLH141), bHLH142 (TIP2) had been reported play an essential role in pollen development. bHLH2 is annotated as “Similar to Transcription factor ICE1”. ICE1 had been reported related to stresses tolerance but so far not been reported an association with pollen development. This study aims to characterize the role of bHLH2 in rice pollen development.
    The bHLH2 is broadly expressed in leaf sheath, young panicles, anther, ovary, and seed. In situ hybridization data indicated that bHLH2 expressed highly in the anther walls, meiocyte at early stage of anther development. Moreover, bHLH2 is highly expressed in carpel and ovule during ovary development. The expression pattern suggested that bHLH2 might involve in reproductive organs development. A Korea Postech T-DNA mutant (bhlh2) was carried out detail study. The bhlh2 mutant showed partial pollen viability and grain fertility. Genotyping confirmed T-DNA was inserted in the 3rd exron of bHLH2. Southern blot data indicated that this mutant has three T-DNA insertions but single insertion homozygote was used for the further molecular study. TUNEL assay indicated that bhlh2 mutant has prolonged tapetal PCD. RNAi-bHLH2 transgenic lines indicated that some RNAi lines expressed a low level of FL cds bHLH2 and have more severe in grain infertility. PCD markers (AP37, AP25, and CP1) and lipid biosynthesis markers (MS2, CYP704B2, and C6) were down-regulated in RNAi lines at YM. We hypothesize that T-DNA homozygote line has truncated form of bHLH2 (retains conserve bHLH domain) has less sterility problem than RNAi transgenic line. That implies the importance of bHLH domain for normal biological function. TRIM activation homozygous line showed constitutively upregulated of bHLH2 and it maintains good pollen fertility. Overall, this study indicated that bHLH2 contributes to pollen development in rice.

    Chinese abstract 1 Abstract 2 Acknowledgement... 3 Index... 4 I.Introduction 11 1. Reproductive organs development 11 2. Basic helix-loop-helix transcription factor 12 3. Tapetal programmed cell death (PCD) 13 4. Sporopollenin biosynthesis 13 5. Biological function of ICE1 13 6. Preliminary results of bhlh2 14 II. Material and Methods 15 1. Phylogenetic analysis 15 2. Information of Vector of bhlh2 mutants 15 3. Sample collection 15 4. Total RNA isolation method 16 5. RNA In situ Hybridization 16 6. Genotyping to confirm T-DNA insertion site 17 7. Southern blot analysis 17 8. Agronomy traits evaluation 18 9. qRT-PCR analysis 18 10. TUNEL (TdT-mediated dUTP Nick-End Labeling) assay 18 11. Pollen viability test 19 12. RNAi-mediated gene silencing of bHLH2 19 13. bHLH2 activation tagging TRIM 20 III. Results 21 1. Phylogenetic analysis of bHLH2 21 2. Gene expression patterns of bHLH2 in various tissues 21 3. bHLH2 expression in the anther and ovary analyzed by In situ hybridization (ISH) 22 4. Genotyping confirmed T-DNA inserted in bHLH2 22 5. Southern blot analysis T-DNA copy number in mutant 23 6. bhlh2 mutant defective in seed development 23 7. Agronomy traits and grain yield loss in bhlh2 mutant 23 8. Defective of anther development in bhlh2 mutant 24 9. Prolonged PCD in bhlh2 anther 24 10. bHLH2 reduced PCD in ovary 25 11. bHLH2 RNAi transgenic line defected in pollen development 25 12. Agronomic traits and grain yield loss in RNAi-bHLH2 26 13. Alteration in the expression of key genes associated with PCD and lipid biosynthesis 26 14. Gain of function using activation-bHLH2 27 15. bHLH2 might regulates PSS1 expression 28 IV. Discussion 29 1. bHLH2 involves in rice pollen development 29 2. Prolong PCD in bhlh2 mutant cause male sterility 30 3. Future prospective 30 4. Summary of this study 31 5.Table 32 6. Figure 37 7. Supplementary data 61 References 63 Appendix 68 Table content Table. 1 Primer List of this study 32 Table. 2 Agronomy traits and grain yield loss in bhlh2 mutant 34 Table. 3 Agronomy traits and grain yield in RNAi-bHLH2 transgenic rice. 35 Table. 4 Agronomy traits and grain yield loss activation tagged mutant line 36 Fig.1 Scheme of bHLH2 gene and vector of pGA2715 and pGA2707 37 Fig. 2 Multiple alignments of bHLH domain 38 Fig. 3 Phylogenetic tree of bHLH2, its homologues and pollen marker gene 39 Fig. 4 Gene expression pattern of bHLH2 in various tissues of Hwa Yang. 40 Fig.5 In situ hybridization of bHLH2 expression pattern in the anther and ovary of Hwa Yang during spikelet development. 41 Fig.6 Genotyping of bhlh2 mutant 42 Fig.7 Southern blot analysis T-DNA copy number in bhlh2 mutant. 43 Fig.8 Phenotype of bhlh2 mutant 44 Fig.9 bhlh2 mutant reduced grain fertility and slightly reduced seeds size. 45 Fig.10 bhlh2 mutant reduced in pollen viability 46 Fig.11 Loss function of bHLH2 defects in anther wall and microspore development 47 Fig. 12 Prolonged tapetal programmed cell death in bhlh2 anther by TUNEL assay. 48 Fig 13 Comparison of PCD in ovary between the wild-type and bhlh2 mutant. 49 Fig. 14 Alter PCD markers genes in bhlh2 mutant. 50 Fig. 15 Alter lipid biosynthesis markers genes in bhlh2 mutant. 51 Fig. 16 Knockdown bHLH2 using RNAi transgenic approach. 52 Fig. 17 Phenotype of RNAi-bHLH2. 53 Fig. 18 RNAi-bHLH2 transgenic plants reduced pollen fertility 54 Fig. 19 Altered PCD marker gene expression in the anther of RNAi- bHLH2 transgenic lines. 55 Fig. 20 Altered lipid biosynthesis marker gene expression in the anther of RNAi-bHLH2 transgenic lines. 56 Fig. 21 TRIM mutant activated bHLH2 57 Fig. 22 Phenotype of activation bHLH2 58 Fig. 23 Binding site prediction of bHLH2 on PSS1 promoter region and altered expression of PSS1 in knock out mutant and RNAi silencing of bHLH2. 59 Fig. 24 Proposed model of bHLH2 in this study. 60  Supplementary Data Supplementary Fig. 1 Phenotype of bhlh2 mutant. 61 Supplementary Fig. 2 Southern blot indicated bhlh2 mutant has two copies of T-DNA insertion. 62  Appendix Appendix. 1 Rice flower anatomy . 68 Appendix. 2 Rice anther morphology ……………………….……..........69 Appendix. 3 Known genes involved in pollen development pathway. 70 Appendix. 4 Rice expression Profile by RiceXpro database . 71 Appendix. 5 OE bHLH2 causing lethal transgenic plants. 72

    References

    Aarts, M.G., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z.A., Mulligan, B.J., Stiekema, W.J., Scott, R., and Pereira, A. (1997). The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12, 615-623.
    Ariizumi, T., and Toriyama, K. (2011). Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review Plant Biololgy 62, 437-460.
    Aya, K., Ueguchi-Tanaka, M., Kondo, M., Hamada, K., Yano, K., Nishimura, M., and Matsuoka, M. (2009). Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell 21, 1453-1472.
    Bernhardt, C., Lee, M.M., Gonzalez, A., Zhang, F., Lloyd, A., and Schiefelbein, J. (2003). The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130, 6431-6439.
    Budhagatapalli, N., Narasimhan, R., Rajaraman, J., Viswanathan, C., and Nataraja, K.N. (2016). Ectopic expression of AtICE1 and OsICE1 transcription factor delays stress-induced senescence and improves tolerance to abiotic stresses in tobacco. J. Plant Biochem. Biotechnol 25, 285.
    Cai, C.F., Zhu, J., Lou, Y., Guo, Z.L., Xiong, S.X., Wang, K., and Yang, Z.N. (2015). The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Science China Press 60, 1073.
    Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martinez-Garcia, J.F., Bilbao-Castro, J.R., and Robertson, D.L. (2010). Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology 153, 1398-1412.
    Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F., and Yu, S.M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta -glucoronidase gene. . Plant Molecular Biology 22, 491-506.
    Chen, T.K., Yang, H.T., Fang, S.C., Lien, Y.C., Yang, T.T., and Ko, S.S. (2016). Hybrid-Cut: An improved sectioning method for recalcitrant plant tissue samples. Journal of Visualized Experiments : JoVE.
    Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J.K. (2003). ICE1: a regulator of cold-induced transcriptome and freezing tolerance in arabidopsis. Genes Dev 17, 1043-1054.
    Chow, C.N., Zheng, H.Q., Wu, N.Y., Chien, C.H., Huang, H.D., Lee, T.Y., Chiang-Hsieh, Y.F., Hou, P.F., Yang, T.Y., and Chang, W.C. (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research 44, D1154-1160.
    Dalkiliç, Z., and Mestav, H.O. (2011). In vitro pollen quantity, viability and germination tests in quince African Journal of Biotechnology 10 (73), 16516-16520.
    de Azevedo Souza, C., Kim, S.S., Koch, S., Kienow, L., Schneider, K., McKim, S.M., Haughn, G.W., Kombrink, E., and Douglas, C.J. (2009). A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21, 507-525.
    Deng, C., Ye, H., Fan, M., Pu, T., and Yan, J. (2017). The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signaling & Behavior 12, e1316442.
    Franco-Zorrilla, J.M., Lopez-Vidriero, I., Carrasco, J.L., Godoy, M., Vera, P., and Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. PNAS 111, 2367-2372.
    Fu, Z., Yu, J., Cheng, X., Zong, X., Xu, J., Chen, M., Li, Z., Zhang, D., and Liang, W. (2014). The rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26, 1512-1524.
    Goldberg, R.B., Beals, T.P., and Sanders, P.M. (1993). Anther development: basic principles and practical applications. Plant Cell 5, 1217-1229.
    Gomez, J.F., Talle, B., and Wilson, Z.A. (2015). Anther and pollen development: A conserved developmental pathway. J Integr Plant Biol 57, 876-891.
    Guiderdoni, E., An, G.h., Yu, S.M., Hsing, Y.i., and Wu, C.y. (2007). T-DNA insertion mutants as a resource for rice functional genomics. In Rice Functional Genomics New York, NY: Springer.
    Hafidh, S., Fila, J., and Honys, D. (2016). Male gametophyte development and function in angiosperms: a general concept. Plant Reprod 29, 31-51.
    Higginson, T., Li, S.F., and Parish, R.W. (2003). AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J 35, 177-192.
    Hu, Y., Jiang, L., Wang, F., and Yu, D. (2013). Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. The Plant Cell 25, 2907-2924.
    Huang, X.S., Zhang, Q., Zhu, D., Fu, X., Wang, M., Zhang, Q., Moriguchi, T., and Liu, J.H. (2015). ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot 66, 3259-3274.
    Ito, T., and Shinozaki, K. (2002). The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43, 1285-1292.
    Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J.L., and Meyerowitz, E.M. (2004). The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430, 356-360.
    Ito. S, Song. Y.H , Josephson-Day. A.D, Miller. R.J, Breton. G, Olmstead. R.G, and Imaizumi. T. (2012 ). FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. PNAS 109 3582–3587.
    Jeong, D.H., An, S., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130, 1636-1644.
    Ji, C., Li, H., Chen, L., Xie, M., Wang, F., Chen, Y., and Liu, Y.G. (2013). A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant 6, 1715-1718.
    Ji, Y., Xiao, J., Shen, Y., Ma, D., Li, Z., Pu, G., Li, X., Huang, L., Liu, B., Ye, H., and Wang, H. (2014). Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol 55, 1592-1604.
    Jiang, J., Zhang, Z., and Cao, J. (2013). Pollen wall development: the associated enzymes and metabolic pathways. Plant Biology (Stuttgart, Germany) 15, 249-263.
    Jung, K.H., Han, M.J., Lee, Y.S., Kim, Y.W., Hwang, I., Kim, M.J., Kim, Y.K., Nahm, B.H., and An, G. (2005). Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17, 2705-2722.
    Ko, S.S., Li, M.J., Ku, M.S.-B., Ho, Y.C., Lin, Y.J., Chuang, M.H., Hsing, H.X., Lien, Y.C., Yang, H.T., Chang, H.C., and Chan, M.T. (2014). The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 26, 2486-2504.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.
    Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. The Plant cell 17, 3155-3175.
    Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol 54, 755-765.
    Lee, S.H., Li, C.W., Liau, C.H., Chang, P.Y., Liao, L.J., Lin, C.S., and Chan, M.T. (2015). Establishment of an Agrobacterium-mediated genetic transformation procedure for the experimental model orchid Erycina pusilla. Plant Cell Tiss Organ Cult 120, 120: 211.
    Li, H., Pinot, F., Sauveplane, V., Werck-Reichhart, D., Diehl, P., Schreiber, L., Franke, R., Zhang, P., Chen, L., Gao, Y., Liang, W., and Zhang, D. (2010). Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22, 173-190.
    Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., and Zhang, D.B. (2006a). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18, 2999-3014.
    Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., Guo, J., Liang, W., Chen, L., Yin, J., Ma, H., Wang, J., and Zhang, D. (2006b). Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141, 1167-1184.
    Lin, H.Y., Wei, M.J., Ko, S.S., Chen, J.C., Lien, Y.C., Li, H.H., Liu, Z.H., and Fang, S.C. (2014). Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in phalaenopsis aphrodite. Plant Mol Biol 84, 203–226.
    Ma, H. (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56, 393–434.
    Niu, N., Liang, W., Yang, X., Jin, W., Wilson, Z.A., Hu, J., and Zhang, D. (2013). EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4, 1445.
    Nonomura, K.I. (2003). The MSP1 Gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. The Plant Cell Online 15, 1728-1739.
    Pacini, E., and Dolferus, R. (2016). The trials and tribulations of the plant male gametophyte — understanding reproductive stage stress tolerance. In abiotic and biotic stress in plants - recent advances and future perspectives, A.K. Shanker and C. Shanker, eds (Rijeka: InTech), pp. Ch. 29.
    Phan, H.A., Iacuone, S., Li, S.F., and Parish, R.W. (2011). The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. The Plant Cell 23, 2209-2224.
    Rio, D.C., Ares, M., Jr., Hannon, G.J., and Nilsen, T.W. (2010). Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols 2010, pdb.prot5439.
    Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81, 8014-8018.
    Sasaki-Sekimoto, Y., Saito, H., Masuda, S., Shirasu, K., and Ohta, H. (2014). Comprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling. Plant Signaling & Behavior 9, e27639.
    Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., and Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96, 11664-11669.
    Scott, R., Hodge, R., Paul, W., and Draper, J. (1991). The molecular biology of anther differentiation. Plant Science 80 167-191.
    Sorensen, A.M., Kro¨ ber, S., Unte U, S., Huijser, P., Dekker, K., and Saedler, H. (2003). The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The Plant Journal 33, 413–423.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731-2739.
    Toledo-Ortiz, G. (2003). The Arabidopsis Basic/Helix-Loop-Helix transcription factor family. The Plant Cell 15, 1749-1770.
    Toledo-Ortiz, G., Huq, E., and Quail, P.H. (2003). The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15, 1749-1770.
    Wilson, Z.A., and Zhang, D.B. (2009). From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany 60, 1479-1492.
    Wilson, Z.A., Morroll, S.M., Dawson, J., Swarup, R., and Tighe, P.J. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28, 27-39.
    Wu, H.M., and Cheun, A.Y. (2000). Programmed cell death in plant reproduction. Plant Mol Biol 44, 267-281.
    Yamaguchi, T., Lee, D.Y., Miyao, A., Hirochika, H., An, G., and Hirano, H.Y. (2006). Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. The Plant Cell 18, 15-28.
    Yang, W.C., Ye, D., Xu, J., and Sundaresan, V. (1999). The SPOROCYTELESS gene of arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev 13, 2108-2117.
    Yang, Z.N. (2016). Regulation of sporopollenin synthesis for pollen wall formation in plant. Sci China Life Sci 59, 1335-1337.
    Zhang, D., Liang, W., Yin, C., Zong, J., Gu, F., and Zhang, D. (2010). OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiology 154, 149-162.
    Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., and Lu, H. (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. The Plant Cell 26, 2939-2961.
    Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U., and Ma, H. (2006). Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133, 3085-3095.
    Zhou, J., Li, F., Wang, J.L., Ma, Y., Chong, K., and Xu, Y.Y. (2009). Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166, 1296-1306.
    Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., Gu, S., Lin, Q., Wang, D., Jiang, L., Su, N., Zhang, X., Liu, L., Cheng, Z., Lei, C., Wang, J., Guo, X., Wu, F., Ikehashi, H., Wang, H., and Wan, J. (2011). Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23, 111-129.

    下載圖示 校內:2022-08-22公開
    校外:2022-08-22公開
    QR CODE