| 研究生: |
林志堅 Lin, Chih-Chien |
|---|---|
| 論文名稱: |
光學監控輔助蒸鍍之氮化鎵共振腔發光二極體研究 Investigation of GaN Resonant Cavity Light Emitting Diode Using Optical Monitoring Assistance |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 氮化鎵 、共振腔發光二極體 、布拉格反射鏡 、光學監控 |
| 外文關鍵詞: | GaN, RCLED, DBR, Optical Monitoring |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係利用光學監控輔助蒸鍍系統成長布拉格反射鏡,然後將布拉格反射鏡的研究結果應用於氮化鎵共振腔發光二極體之製作,最後量測其特性。
論文中,我們先利用光學監控輔助的方式,控制單層膜的光學特性,再蒸鍍於藍光波段具有高反射率之布拉格反射鏡,使用的材料為二氧化鈦和二氧化矽,因為這二者的折射率差異很大,可以用較少的層數達到高反射率,再將其研究結果製作於發光二極體上,完成元件,最後用電激發光系統量測其光特性,如光強度、發光頻譜以及半高寬。
由量測出來的結果可以發現,發光強度有明顯的增加,而且半高寬也有變窄的現象,可以得知反射鏡有發揮其功用,也可以證實光學監控輔助蒸鍍的功用,將來便可以輕易地選擇其他材料來製作布拉格反射鏡。
In this dissertation, we evaporate distributed Bragg reflectors (DBRs) using optical monitoring assistance. Then use the investigation of DBRs on fabrication of GaN Resonant Cavity Light Emitting Diode (RCLED). Finally, measure the optical properties.
First, we use the optical monitoring to control the optical properties. Then, evaporate DBRs reaching high reflection at blue light wavelength which using SiO2 and TiO2. Because of this two materials have large difference of refractive index, and we can use less pairs to reach high reflection. Then, use the investigation of DBRs on GaN LED and complete the device. Finally, use the Electroluminescence (EL) system to measure the output luminescence wavelength, emission intensity and calculate the half-height width of intensity.
We can find that it has higher emission intensity, narrow half-height width of intensity. We can see that DBRs is useful. And also verify the function of optical monitoring assistance. So we can choose other materials to fabricate DBR easily in the future.
[1] H. A. Macleod, “Monitoring of optical coatings”, Appl. Opt. 20, 82-89, 1981.
[2] E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode”, Appl. Phys. Lett. 60, 921-923, 1992.
[3] E. F. Schubert, N. E. J. Hunt, R. J. Malik, M. Micovic, and D. L. Miller, “Temperature and modulation characteristics of resonant-cavity light-emitting diodes”, Journal of Lightwave Technology 14, 1721-1729, 1996.
[4] H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, and G. Borghs, “High Efficiency Planar Microcavity LED’s: Comparison of Design and Experiment”, IEEE Photonics Technol. Lett. 7, 287-289, 1995.
[5] J. W. Gray, Y. S. Jalili, P. N. Stavrinou, M. Whitehead, G. Parry, A. Joel, R. Robjohn, R. Petrie, S. Hunjan, P. Gong, and G. Duggan, “High-efficiency, low voltage resonant-cavity light-emitting diodes operating around 650 nm”, Electron. Lett. 36, 1730-1731, 2000.
[6] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, IEEE J. Quantum Electron. 33, 1810-1824, 1997.
[7] K. Streubel. U. Helin. V. Oskarsson, E. Backlin, and A. Johansson, “High brightness visible (660 nm) resonant-cavity light-emitting diode” IEEE Photonics Technol. Lett. 10, 1685-1687, 1998.
[8] 李世鴻, “半導體工程原理”, 全威圖書有限公司, 1997。
[9] N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940nm”, Appl. Phys. Lett. 63, 2600-2602, 1993.
[10] A. Miller, M. Ebrahimzadeh, and D. M. Finlayson, “Semiconductor Quantum Optoelectronics”, Scottish Universities Summer School in Physics & Institute of Physics Publishing, Bristol and Philadelphia, 1999.
[11] L. A. Coldren, “Lasers and modulators for OEICs”, in Integrated Optoelectronics Academic Press, 1994.
[12] A. Yariv, “Quantum electronics, 3rd ed”, Wiley, 1989.
[13] D. I. Vabic and S. W. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors”, IEEE J. Quantum Electron. 28, 514-524, 1992.
[14] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 1999。
[15] M. Fukuda, “Reliability and Degradation of Semiconductor Lasers and LEDs”, Artech House, 19, 1991.
[16] S. M. Sze, “Physics of Semiconductor Devices”, Wiley, New York, 1981.