| 研究生: |
徐雅玫 Hsu, Ya-mei |
|---|---|
| 論文名稱: |
膽鹼性受體在脂肪細胞和骨骼肌中對葡萄糖攝取的影響 Role of muscarinic cholinoceptor in the regulation of glucose uptake into adipocytes or muscle |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 葡萄糖攝取 、膽鹼性受體 、乙醯膽鹼 |
| 外文關鍵詞: | acetylcholine, muscarinic cholinoceptor, glucose uptake |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖與自主神經系統的失衡有關,會造成交感神經功能低下與副交感神經功能亢進。然而,文獻較少提及副交感神經膽鹼性受體如何影響能量代謝。因此,本研究欲藉由探討膽鹼性受體在脂肪或肌肉組織中所扮演的角色,來了解肥胖形成原因。首先,以西方點墨法觀察到三種的膽鹼性受體亞型(M1、M2及M3)都存在於脂肪和肌肉組織中。接著,乙醯膽鹼會增加Wistar雄性大白鼠肌肉組織的葡萄糖攝取(glucose uptake)的能力,並呈現劑量相關性。然而,在副睪脂肪細胞中卻會抑制胰島素所刺激的葡萄糖攝取作用。進ㄧ步,利用不同的特異性受體阻斷劑,結果指出肌肉組織藉由M1膽鹼性受體來調控,而脂肪細胞是透過M3膽鹼性受體來調控。此外,利用細胞內訊息的阻斷劑來確認膽鹼性受體,藉由PLC-PKC路徑對脂肪細胞進行調控。最後,離體的脂肪組織在給予乙醯膽鹼刺激,會抑制游離脂肪酸的釋放。若給予bethanechol刺激膽鹼性受體,亦會促進3T3-L1脂肪細胞內脂肪油滴的生成及增加BALB/c小鼠的食慾。綜合上述結果,副交感神經的過度活化確實可以透過膽鹼性受體的訊息來調控身體能量的代謝。
It has been documented that obesity is related to the imbalance of autonomic nervous system, and leads to reduce the sympathetic tone and increase the cholinergic activity. However, little is known how the cholinergic nerves affect the energy metabolism via muscarinic cholinoceptor. The present study aimed at the role of muscarinic cholinoceptor in the adipose tissue and muscle to investigate the possible mechanisms of pathology for obesity. First, the Western blotting analysis appears that all muscarinic cholinoceptor subtypes (M1, M2, M3) were expressed in white adipose tissue (WAT) and muscle in Wistar rats. Moreover, acetylcholine (ACh) increases glucose uptake into isolated muscle in a concentration-dependent manner. However, ACh stimulation attenuates insulin-stimulated glucose uptake into isolated WAT. To use specific muscarinic antagonists, our results also indicate that these effects act in muscles through M1 and in adipocytes through M3 receptor. Adipocytes were pretreated with signal transduction inhibitors to clarify the role of ACh in WAT. Results showed that attenuation of the glucose uptake evoked by ACh is mainly due to the activation of muscarinic M3 receptors in WAT through PLC-PKC pathway. Otherwise, ACh reduced the release of glycerol from WAT in a concentration-dependent manner. Finally, bethanechol, a muscarinic agonist, induces adipogensis in 3T3-L1 cells and increases food intake of BALB/c mice. These results demonstrate that the cholinergic hyperactivity may involve in the altered energy metabolism via an activation of the muscarinic cholinoceptor.
Ahlskog JE, Hoebel BG. 1973. Overeating and obesity from damage to a noradrenergic system in the brain. Science 182:166-169.
Alessi DR. 1997. The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1beta (Rsk-2) and p70 S6 kinase. FEBS Lett 402:121-123.
Arone LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. 1995. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol 269:R222-R225.
Bosch RR, Bazuine M, Wake MM, Span PN, Olthaar AJ, Schurmann A, Maassen JA, Hermus AR, Willems PH, Sweep CG. 2003. Inhibition of protein kinase CbetaII increases glucose uptake in 3T3-L1 adipocytes through elevated expression of glucose transporter 1 at the plasma membrane. Mol Endocrinol 17:1230-1239.
Bray GA. 1997. Obesity and reproduction. Hum Reprod 12 Suppl 1:26-32.
Cheng JT, Liu IM, Yen ST, Chen PC. 2000. Role of alpha1A-adrenoceptor in the regulation of glucose uptake into white adipocyte of rats in vitro. Auton Neurosci 84:140-146.
Chernogubova E, Cannon B, Bengtsson T. 2004. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145:269-280.
Chin JE, Dickens M, Tavare JM, Roth RA. 1993. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J Biol Chem 268:6338-6347.
Currie PJ. 1993. Differential effects of NE, CLON, and 5-HT on feeding and macronutrient selection in genetically obese (ob/ob) and lean mice. Brain Res Bull 32:133-142.
Farese RV, Sajan MP, Standaert ML. 2005. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593-605.
Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J. 2006. Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab 4:363-375.
Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, Kratky D, Wagner EF, Klingenspor M, Hoefler G, Zechner R. 2006. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312:734-737.
Hales CN, Kennedy GC. 1964. Plasma glucose, non-esterified fatty acid and insulin concentrations in hypothalamic-hyperphagic rats. Biochem J 90:620-624.
Han KL, Jung MH, Sohn JH, Hwang JK. 2006. Ginsenoside 20S-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor gamma (PPARgamma) in 3T3-L1 adipocytes. Biol Pharm Bull 29:110-113.
Inoue S, Mullen YS, Bray GA. 1983. Hyperinsulinemia in rats with hypothalamic obesity: effects of autonomic drugs and glucose. Am J Physiol 245:R372-378.
Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS. 2002. Obesity and the risk of heart failure. N Engl J Med 347:305-313.
Lakka TA, Lakka HM, Salonen R, Kaplan GA, Salonen JT. 2001. Abdominal obesity is associated with accelerated progression of carotid atherosclerosis in men. Atherosclerosis 154:497-504.
Larsen TM, Toubro S, Astrup A. 2003. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 27:147-161.
Leitges M, Plomann M, Standaert ML, Bandyopadhyay G, Sajan MP, Kanoh Y, Farese RV. 2002. Knockout of PKC alpha enhances insulin signaling through PI3K. Mol Endocrinol 16:847-858.
Liu TP, Yu PC, Liu IM, Tzeng TF, Cheng JT. 2002. Activation of muscarinic M1 receptors by acetylcholine to increase glucose uptake into cultured C2C12 cells. Auton Neurosci 96:113-118.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275.
May LG, Johnson S, Krebs S, Newman A, Aronstam RS. 1999. Involvement of protein kinase C and protein kinase A in the muscarinic receptor signalling pathways mediating phospholipase C activation, arachidonic acid release and calcium mobilisation. Cell Signal 11:179-187.
Nagai N, Moritani T. 2004. Effect of physical activity on autonomic nervous system function in lean and obese children. Int J Obes Relat Metab Disord 28:27-33.
Nonogaki K. 2000. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533-549.
Nonogaki K, Nozue K, Oka Y. 2006. Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology 147:5893-5900.
Ostman J, Efendic S. 1970. Catecholamines and metabolism of human adipose tissue. II. Effect of isoprophylnoradrenaline and adrenergic blocking agents on lipolysis in human omental adipose tissue in vitro. Acta Med Scand 187:471-476.
Persson-Sjogren S, Lindstrom P. 2004. Effects of cholinergic m-receptor agonists on insulin release in islets from obese and lean mice of different ages: the importance of bicarbonate. Pancreas 29:e90-99.
Rodbell M. 1964. Localization of lipoprotein lipase in fat cells of rat adipose tissue. J Biol Chem 239:753-755.
Rohner-Jeanrenaud F. 1995. A neuroendocrine reappraisal of the dual-centre hypothesis: its implications for obesity and insulin resistance. Int J Obes Relat Metab Disord 19:517-534.
Shimba S, Wada T, Hara S, Tezuka M. 2004. EPAS1 promotes adipose differentiation in 3T3-L1 cells. J Biol Chem 279:40946-40953.
Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, Farese RV. 1999. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274:25308-25316.
Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, et al. 1991. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771-15781.
Van Gaal LF, Mertens IL, De Block CE. 2006. Mechanisms linking obesity with cardiovascular disease. Nature 444:875-880.
Yoshimura R, Omori H, Somekawa S, Osaka T, Ito R, Inoue S, Endo Y. 2006. Continuous carbachol infusion promotes peripheral cell proliferation and mimics vagus hyperactivity in a rat model of hypothalamic obesity. Biomed Res 27:81-88.
校內:2012-08-17公開