簡易檢索 / 詳目顯示

研究生: 林靖崴
Lin, Jing-Wei
論文名稱: 高度方向性石墨烯奈米帶光感測器
Photodetectors based on highly aligned graphene nanoribbons
指導教授: 涂維珍
Tu, Wei-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 石墨烯石墨烯奈米帶光感測器
外文關鍵詞: graphene, graphene nanoribbon, photodetector
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯奈米帶獨特的性質突破了石墨烯零帶隙的限制,因此被視為未來奈米元件中通道材料的潛力候選者,然而將大面積石墨烯圖案化至小於100nm且高度方向性的石墨烯奈米帶陣列,仍是一個有待解決的問題。

    因此在本論文中提出了一個簡單且可大面積製造石墨烯奈米帶陣列的方法,首先在石墨烯基板上旋塗聚甲基丙烯酸甲酯(poly (methyl methacrylate), PMMA)光阻,接著利用Halbach陣列磁鐵在基板上排列高度方向性的鎳奈米線陣列作為蝕刻遮罩,在後續氧氣等離子蝕刻未受遮蔽的石墨烯,接著利用丙酮和超音波震洗將鎳奈米線和PMMA移除,得到高度方向性的石墨烯奈米帶陣列,並以此石墨烯奈米帶實現高靈敏度之光感測器。

    實驗規劃各項儀器來檢測石墨烯奈米帶及其光感測器的特性,以掃描式電子顯微鏡(Scanning Electron Microscope, SEM)、穿透式電子顯微鏡(Transmission Electron Microscope, TEM)、原子力顯微鏡(Atomic Force Microscope, AFM)、拉曼光譜儀(Raman)等量測來分析石墨烯奈米帶的品質、表面形貌和側面結構,透過電流-電壓(I-V)量測光感測器的特性。相較於大片石墨烯之光感測器,石墨烯奈米帶光感測器的暗電流有明顯的下降及靈敏度大幅提升,證實此實驗成功打開石墨烯的能隙,未來有望應用在更多領域並有效提高元件特性。

    The unique properties of graphene nanoribbons break through the zero-bandgap limit of graphene and are regarded as potential candidates for materials in future nanodevices. However, patterning graphene nanoribbons with the width smaller than 100 nm are still a challenge. Therefore, in this thesis, a simple method for fabricating large-area graphene nanoribbon arrays was proposed. First, poly(methyl methacrylate) (PMMA) photoresist was spin-coated on the graphene. The highly directional nickel nanowire array as an etching mask was arranged on the substrate using a Halbach array magnet, followed by oxygen plasma etching of the unmasked graphene. The nickel nanowires and PMMA were removed by Acetone and a highly directional graphene nanoribbon array was therefore obtained. Additionally, a high-sensitivity photodetector was realized based on the graphene nanoribbon array. Various experiments were carried out to determine the properties of graphene nanoribbons and their photodetectors. Scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), and Raman spectrometer were used to analyze the quality, surface morphology and cross-sectional structure of graphene nanoribbons; the characteristics of photodetectors were analyzed by current-voltage (I-V) curves. Compared with the photodetector based on large-area graphene, the dark current of the graphene nanoribbon photodetector was significantly reduced and the sensitivity was greatly improved. These results confirm that we successfully open the bandgap of graphene, and it is expected to effectively improve devices’ characteristics and can be applied in various fields.

    Keywords: graphene, graphene nanoribbon, photodetector

    中文摘要I 目錄XIII 圖目錄XV 致謝XX 第一章 緒論1 1.1 前言 1 1.2 研究動機 1 第二章 理論 3 2.1 石墨烯簡介 3 2.2 石墨烯的製作方法 5 2.3 石墨烯奈米帶簡介 9 2.4 石墨烯奈米帶的製作方法 13 2.5 光感測器原理 20 2.6 海爾貝克陣列原理 25 第三章 實驗儀器介紹 27 3.1 旋轉塗佈機 27 3.2 反應式離子蝕刻機 28 3.3 單面光罩對準機 29 3.4 熱蒸鍍機 30 3.5 光學顯微鏡 31 3.6 雙束型聚焦離子束儀 (含熱場發射掃描式電子顯微鏡) 31 3.7 原子力顯微鏡 33 3.8 穿透式電子顯微鏡 34 3.9 拉曼光譜儀 35 3.10 電壓電流量測系統 36 第四章 實驗步驟 37 4.1 石墨烯奈米帶光檢測器製作 37 4.2 PMMA 光阻旋塗 38 4.3 鎳奈米線排列 38 4.4 石墨烯奈米帶製作 39 4.5 微影製程 39 4.6 蒸鍍銀電極 40 第五章 結果與討論 41 5.1 光學顯微鏡 41 5-2 掃描式電子顯微鏡(含元素分析) 45 5-3 原子力顯微鏡 57 5-4 穿透式電子顯微鏡(含元素分析) 60 5-5 拉曼光譜儀 66 5-6 I-V 電壓電流量測 73 第六章 總結及未來展望 79 參考文獻 80 圖目錄 第二章理論 圖2- 1 由石墨烯所構成富勒烯、奈米管和石墨的結構示意圖[10] 3 圖2- 2 石墨烯在電池、超級電容器、濾水器、太陽能電池、晶體管和有機發光二極體的 應用[11] 4 圖2- 3 石墨烯在不同製備方法下,品質與成本之關係圖[16] 5 圖2- 4 基於3M 膠帶分離石墨烯之機械剝離法[12] 6 圖2- 5 氧化石墨烯還原法的製備流程[17] 7 圖2- 6 化學氣相沉積石墨烯的製作流程[15] 9 圖2- 7 石墨烯奈米帶結構示意圖[23] 10 圖2- 8(a)左至右分別為ZGNR、CGNR、AGNR (b) AGNR 和ZGNR 的能隙和寬度的關係 圖[28] 11 圖2- 9 不同電態的半導體材料示意圖(分子、量子點和塊狀材料)[29] 12 圖2- 10 圖2-10 自上而下和下而上合成的石墨烯奈米帶[39] 13 圖2- 11 以聚合物奈米線作為遮罩的石墨烯奈米帶之製作流程[8] 14 圖2- 12 金屬催化切割法的示意圖[33] 15 圖2- 13 製備石墨烯奈米帶的懸浮液的示意圖[35] 16 圖2- 14 等離子蝕刻CNT 合成GNR 的示意圖[36] 17 圖2- 15 表面合成GNR 示意圖[37] 18 圖2- 16 (a)為鎳奈米棒轉變到石墨烯奈米帶的示意圖(b)鎳奈米棒和石墨烯奈米帶的SEM 影像[38] 19 圖2- 17 (a)上為金屬-半導體蕭特基接面PVE 的示意圖,下為P-N 接面PVE 的示意圖 (b) 照光和黑暗時P-N 接面典型的IV 曲線圖[42] 21 圖2- 18 (a.b)為照光和黑暗時PCE 元件的示意圖 (c)照光和黑暗時PCE 元件典型的傳輸曲 線圖 (d)照光和黑暗時PCE 典型的IV 曲線圖[42] 22 圖2- 19 (a)上為黑暗時PGE 的示意圖,中圖為電洞陷阱,下圖為電子陷阱(b)照光和黑暗 時PCE 元件典型的傳輸曲線圖(c)照光和黑暗時PCE 元件典型的IV 曲線圖[42] 23 圖2- 20 (a)PTE 產生光電流的示意圖(紅點為光班、S1 和S2 為塞貝克係數) (b)照光和黑暗 時PTE 典型的IV 曲線圖[42] 24 圖2- 21 (a)PBE 機制的示意圖(b)照光和黑暗時PBE 典型的IV 曲線圖[42] 25 圖2- 22 海爾貝克陣列[47] 26 第三章 實驗儀器介紹 圖3- 1 旋轉塗佈機 27 圖3- 2 反應式離子蝕刻機 28 圖3- 3 單面光罩對準機 29 圖3- 4 熱蒸鍍機 30 圖3- 5 光學顯微鏡 31 圖3- 6 雙束型聚焦離子束儀 32 圖3- 7 原子力顯微鏡 33 圖3- 8 穿透式電子顯微鏡 34 圖3- 9 拉曼光譜儀 35 圖3- 10 電壓電流量測系統 36 第四章 實驗步驟 圖4- 1 石墨烯奈米帶光檢測器製作流程圖 37 圖4- 2 左圖為鎳奈米線分散液,右圖為海爾貝克陣列磁鐵和模具 38 圖4- 3 為Autocad 繪製電極光罩的示意圖 40 第五章 結果與討論 圖5- 1 左圖為石墨烯在200 倍下的光學顯微鏡影像圖,右圖為石墨烯基板旋塗PMMA 光 阻後50 倍下的光學顯微鏡影像圖 41 圖5- 2 鎳奈米線陣列在100 倍下的光學顯微鏡影像圖 42 圖5- 3 乾蝕刻(RIE)後200 倍下的光學顯微鏡影像圖 42 圖5- 4 石墨烯奈米帶在200 倍下的光學顯微鏡影像圖 43 圖5- 5 左圖為曝光顯影後的光阻在200 倍下之光學顯微鏡影像圖,右圖為石墨烯奈米帶 光感測器在200 倍下的光學顯微鏡影像圖 44 圖5- 6 為鎳奈米線陣列的SEM 影像圖(濃度為0.050g/L),放大倍率分別為(a)100 倍 (b)300 倍 與(c)500 倍 45 圖5- 7 為鎳奈米線陣列的SEM 影像圖(濃度為0.030g/L),放大倍率分別為(a)100 倍 (b)300 倍 與(c)500 倍 46 圖5- 8 為鎳奈米線陣列的SEM 影像圖(濃度為0.010g/L),放大倍率分別為(a)100 倍 (b)300 倍 與(c)500 倍 47 圖5- 9 石墨烯奈米帶陣列的SEM 影像圖(濃度為0.050g/L),放大倍率分別為(a)200 倍 (b)400 倍 與(c)800 倍 48 圖5- 10 石墨烯奈米帶陣列的SEM 影像圖(濃度為0.030g/L),放大倍率分別為(a)200 倍 (b)400 倍與 (c)800 倍 49 圖5- 11 石墨烯奈米帶陣列的SEM 影像圖(濃度0.010g/L),放大倍率分別為(a)200 倍 (b)400 倍 與(c)800 倍 50 圖5- 12 鎳奈米線和不同蝕刻時間的石墨烯奈米帶SEM 影像圖。(a)放大倍率為8500 倍之 鎳奈米線(b)蝕刻100 秒後的石墨烯奈米帶(放大倍率為15000 倍) (c)蝕刻120 秒後的 石墨烯奈米帶(放大倍率為23000 倍) (d)蝕刻140 秒後的石墨烯奈米帶(放大倍率為 20000 倍) 51 圖5- 13 石墨烯奈米帶光感測器的SEM 影像圖,圖片放大倍率分別為(a)50 倍 (b)230 倍 (c)1000 倍與(d)2500 倍 53 圖5- 14 石墨烯奈米帶的元素分析結果,分析位置分別在(a)石墨烯處與 (b)非石墨烯處 54 圖5- 15 為鎳奈米線的元素分析 55 圖5- 16 為殘留物的元素分析 56 圖5- 17 鎳奈米線的AFM量測結果。 (a)二維AFM影像 (b)三維AFM影像 (c)石墨烯奈米 帶高度分析 57 圖5- 18 石墨烯的AFM 量測結果。 (a)二維AFM影像 (b)三維AFM影像 (c)石墨烯奈米帶 高度分析 58 圖5- 19 為石墨烯奈米帶的AFM量測結果。 (a)二維AFM影像 (b)三維AFM影像 (c)石墨 烯奈米帶高度分析 59 圖5- 20 石墨烯奈米帶的TEM 影像圖,放大倍率分別為(a,b)40K 倍 (c)100K 倍 (d)200K 倍 60 圖5- 21 單層和多層的石墨烯奈米帶之TEM 影像圖,放大倍率分別為(a)800K 倍 (b)800K 倍 (c)800K 倍 與(d)400K 倍 62 圖5- 22 為多層石墨烯奈米帶邊緣的TEM 影像圖,放大倍率為(a)200K 倍與 (b)250K 倍 63 圖5- 23 多層石墨烯奈米帶的元素分析圖。(a)石墨烯奈米帶在400K 倍下的TEM 影像圖 (b)元素分析(C 為藍色點、Si 為紫色點、O 為棕色點) (c)各別元素分析圖 64 圖5- 24 石墨烯的拉曼頻譜分析圖。(a)量測點在石墨烯上(b)量測點不在石墨烯上 67 圖5- 25 PMMA/石墨烯的拉曼頻譜分析圖。(a)量測點位於鎳奈米線上(b)量測點位於 PMMA 上 68 圖5- 26 鎳奈米線/PMMA/石墨烯的拉曼頻譜分析圖。(a)量測點在鎳奈米線上(b)量測點在 PMMA/石墨烯上(c)量測點在SiO2 上 69 圖5- 27 石墨烯奈米帶的拉曼頻譜分析圖。(a)分析點在石墨烯上(插圖為石墨烯的拉曼分 析)(b)分析點不在石墨烯上 70 圖5- 28 三種不同寬度的石墨烯奈米帶之拉曼頻譜分析圖,石墨烯寬度分別約為(a)600nm (b)300 nm 與(c)150 nm 72 圖5- 29 照光和黑暗時的電壓電流圖,(a)整面石墨烯之光感測器(b)石墨烯奈米帶光感測器 73 圖5- 30 不同數量的石墨烯奈米帶之I-V 圖,(a)6 條石墨烯奈米帶光感測器(b)4 條石墨烯 奈米帶光感測器(c)2 條石墨烯奈米帶光感測器(d)無石墨烯奈米帶 75

    [1] Sun, Zhenhua, and Haixin Chang. "Graphene and graphene-like two dimensional materials in photodetection: mechanisms and methodology." ACS nano 8.5 (2014): 4133-4156.
    [2] Yu, Juan, et al. "Dynamic control of high-range photoresponsivity in a graphene nanoribbon photodetector." Nanoscale Research Letters 15.1 (2020):1-9.
    [3] Sakkaki, Babak, et al. "A new photodetector structure based on graphene nanomeshes: an ab initio study." Beilstein Journal of Nanotechnology 11.1 (2020): 1036-1044.
    [4] Zhang, Wenjing, et al. "Opening an electrical band gap of bilayer graphene with molecular doping." ACS nano 5.9 (2011): 7517-7524.
    [5] Matis, Bernard R., et al. "Surface doping and band gap tunability in hydrogenated graphene." ACS nano 6.1 (2012): 17-22.
    [6] Jiao, Liying, et al. "Facile synthesis of high-quality graphene nanoribbons." Nature nanotechnology 5.5 (2010): 321-325.
    [7] Shi, S-F., et al. "Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors." Nano letters 11.4 (2011): 1814-1818.
    [8] Jeon, Sangheon, et al. "Highly aligned polymeric nanowire etch-mask lithography enabling the integration of graphene nanoribbon transistors." Nanomaterials 11.1 (2020): 33.
    [9] Kang, Seok Hee, et al. "A robust highly aligned DNA nanowire arrayenabled lithography for graphene nanoribbon transistors." Nano Letters 15.12 (2015): 7913-7920.
    [10] Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nanoscience and technology: a collection of reviews from nature journals. 2010. 11-19.
    [11] Yang, Gao, et al. "Structure of graphene and its disorders: a review." Science and technology of advanced materials 19.1 (2018): 613-648.
    [12] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
    [13] Xu, Yuxi, et al. "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets." Journal of the American Chemical Society 130.18 (2008): 5856-5857.
    [14] Berger, Claire, et al. "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics." The Journal of Physical Chemistry B 108.52 (2004): 19912-19916.
    [15] Kim, Keun Soo, et al. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." nature 457.7230 (2009): 706-710.
    [16] Novoselov, K. S., and V. I. Fal. "Ko, L. Colombo, PR Gellert, MG Schwab and K. Kim." Nature 490.7419 (2012): 192-200.
    [17] Eda, Goki, and Manish Chhowalla. "Chemically derived graphene oxide: towards large ‐ area thin ‐ film electronics and optoelectronics." Advanced materials 22.22 (2010): 2392-2415.
    [18] Miao, Wenjing, et al. "The magical photoelectric and optoelectronic properties of graphene nanoribbons and their applications." Journal of Materials Chemistry C 9.39 (2021): 13600-13616.
    [19] Xu, Wentao, and Tae-Woo Lee. "Recent progress in fabrication techniques of graphene nanoribbons." Materials Horizons 3.3 (2016): 186-207.
    [20] Celis, Arlenciu, et al. "Graphene nanoribbons: fabrication, properties and devices." Journal of Physics D: Applied Physics 49.14 (2016): 143001.
    [21] Chen, Zongping, Akimitsu Narita, and Klaus Müllen. "Graphene nanoribbons: on ‐ surface synthesis and integration into electronic devices." Advanced Materials 32.45 (2020): 2001893.
    [22] Yano, Yuuta, et al. "A quest for structurally uniform graphene nanoribbons:Synthesis, properties, and applications." The Journal of Organic Chemistry 85.1 (2019): 4-33.
    [23] Han, Melinda Y., et al. "Energy band-gap engineering of graphene nanoribbons." Physical review letters 98.20 (2007): 206805.
    [24] Son, Young-Woo, Marvin L. Cohen, and Steven G. Louie. "Energy gaps in graphene nanoribbons." Physical review letters 97.21 (2006): 216803.
    [25] Saraswat, Vivek, Robert M. Jacobberger, and Michael S. Arnold. "Materials science challenges to graphene nanoribbon electronics." ACS nano 15.3 (2021): 3674-3708.
    [26] Houtsma, RS Koen, Joris de la Rie, and Meike Stöhr. "Atomically precise graphene nanoribbons: interplay of structural and electronic properties." Chemical Society Reviews 50.11 (2021): 6541-6568.
    [27] Johnson, Asha P., H. V. Gangadharappa, and K. Pramod. "Graphene nanoribbons: A promising nanomaterial for biomedical applications." Journal of Controlled Release 325 (2020): 141-162.
    [28] Saraswat, Vivek, Robert M. Jacobberger, and Michael S. Arnold. "Materials science challenges to graphene nanoribbon electronics." ACS nano 15.3 (2021): 3674-3708.
    [29] Brus, Louis. "Chemical approaches to semiconductor nanocrystals and nanocrystal materials." Nanotechnology. Springer, New York, NY, 1999. 257-283.
    [30] Han, Melinda Y., et al. "Energy band-gap engineering of graphene nanoribbons." Physical review letters 98.20 (2007): 206805.
    [31] Bai, Jingwei, Xiangfeng Duan, and Yu Huang. "Rational fabrication of graphene nanoribbons using a nanowire etch mask." Nano letters 9.5 (2009):2083-2087.
    [32] Sinitskii, Alexander, and James M. Tour. "Patterning graphene nanoribbons using copper oxide nanowires." Applied Physics Letters 100.10(2012): 103106.
    [33] Narita, Akimitsu, et al. "Synthesis of structurally well-defined and liquidphase-processable graphene nanoribbons." Nature chemistry 6.2 (2014): 126-132.
    [34] Datta, Sujit S., et al. "Crystallographic etching of few-layer graphene." Nano letters 8.7 (2008): 1912-1915.
    [35] Li, Xiaolin, et al. "Chemically derived, ultrasmooth graphene nanoribbon semiconductors." science 319.5867 (2008): 1229-1232.
    [36] Jiao, Liying, et al. "Narrow graphene nanoribbons from carbon nanotubes." Nature 458.7240 (2009): 877-880.
    [37] Kosynkin, Dmitry V., et al. "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons." Nature 458.7240 (2009): 872-876.
    [38] Shinde, Dhanraj B., et al. "Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons." Journal of the American Chemical Society 133.12 (2011): 4168-4171.
    [39] Cai, Jinming, et al. "Atomically precise bottom-up fabrication of graphene nanoribbons." Nature 466.7305 (2010): 470-473.
    [40] Kato, Toshiaki, and Rikizo Hatakeyama. "Site-and alignment-controlled growth of graphene nanoribbons from nickel nanobars." Nature nanotechnology 7.10 (2012): 651-656.
    [41] Narita, Akimitsu, et al. "Synthesis of structurally well-defined and liquidphase-processable graphene nanoribbons." Nature chemistry 6.2 (2014): 126-132.
    [42] Long, Mingsheng, et al. "Progress, challenges, and opportunities for 2D material based photodetectors." Advanced Functional Materials 29.19 (2019):1803807.
    [43] Qiu, Qinxi, and Zhiming Huang. "Photodetectors of 2D materials from ultraviolet to terahertz waves." Advanced Materials 33.15 (2021): 2008126.
    [44] Ezhilmaran, Bhuvaneshwari, et al. "Recent developments in the photodetector applications of Schottky diodes based on 2D materials." Journal of Materials Chemistry C 9.19 (2021): 6122-6150.
    [45] Wang, Jun, et al. "Design strategies for two ‐ dimensional material photodetectors to enhance device performance." InfoMat 1.1 (2019): 33-53.
    [46] Yang, Cheng, et al. "Mechanism, Material, Design, and Implementation Principle of Two-Dimensional Material Photodetectors." Nanomaterials 11.10(2021): 2688.
    [47] Zhu, Dibin, et al. "Vibration energy harvesting using the Halbach array." Smart Materials and Structures 21.7 (2012): 075020.
    [48] Choi, Jae-Seok, and Jeonghoon Yoo. "Design of a Halbach magnet array based on optimization techniques." IEEE Transactions on Magnetics 44.10(2008): 2361-2366.
    [49] Wang, Jie, et al. "Halbach array assisted assembly of orderly aligned nickel nanowire networks as transparent conductive films." Nanotechnology 30.35 (2019): 355301.

    無法下載圖示 校內:2027-07-19公開
    校外:2027-07-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE