| 研究生: |
李泳達 Li, Yung-Ta |
|---|---|
| 論文名稱: |
一維奈米碳材料電性結構與場發射之研究 Investigation on electronic structures and field emission of one-dimensional nano carbon materials |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 從頭算法 、電性結構 、第一原理 、密度泛函理論 、能帶結構 、場發射 、奈米碳管 、費米能階 、摻雜 、功函數 、奈米硼碳氮管 、能隙 、形成能 |
| 外文關鍵詞: | electronic structure, band structure, density functional theory, first-principles, ab initio calculation, carbon nanotube, Fermi level, field emission, doping, formation energy, energy gap, BC2N nanotube, work function |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用第一原理之密度泛函理論,對一維奈米碳材料進行物理特性研究,最初區域摺疊法依據奈米碳管之螺旋性,所歸類之電性結構已無法再遵循,因此其應用上之預測將會有明顯變化,必須藉由第一原理了解其電學性質與電子場發射間之相互關係。
選擇極小管徑之奈米碳管作為場發射源,然而特殊的深寬比特性,使其電學性質以奈米碳管之曲率效應作為主要依據,表現出較低之費米能,因此相對獲得較高之功函數,有別於超級針對場發射會帶來助益之構想;相同極小管徑下,有限管長之冒口端幾何重構,促使(3,0)和(5,0)之冒口結構分別轉變為sp3-like和sp2特徵,重構結構將會影響費米能附近之佔據態和非佔據態,透過冒口端之侷限態將可改善無限管長之奈米碳管的電子場發射。
摻雜對奈米碳管電性之影響,透過八種可能的B/N co-doping形式,找到硼和氮元素以相連成對的型式置換管壁兩顆碳原子,其形成能表現遠低於將硼和氮元素以分離形式進行摻雜。電性結構分析顯示,扶手椅型奈米碳管受B/N co-doping,將會使其轉變為半導體性;反之,原本為半導體性之鋸齒型奈米碳管,受摻雜作用後其能隙則獲得縮小,唯獨曲率效應較大之(4,0)和(6,0)則呈現金屬性;另一個考量因素,隨著摻雜濃度增加,B/N co-doping奈米碳管之能隙僅在一固定範圍內震盪,並無明顯影響;實際摻雜過程,是無法確保雜質影響的雜化現象,因此利用B-rich或N-rich對B/N co-doping奈米碳管進行雜化,其電性結構將獲得改變,表現出受子或施子狀態,此特徵行為是受費米能偏移至低能價帶區或高能導帶區進行佔據所導致的。
硼和氮元素除了以摻雜方式表現,也可與碳元素以一定化學計量比例合成為BC2N奈米管,而極小管徑(5,0)表現為金屬性,其餘扶手椅型和鋸齒型之BC2N奈米管均為半導體性;在區域II之能隙,主導操控著電子場發射效應,與功函數呈現相對應關係,因此鋸齒型BC2N奈米管之能隙與功函數均表現出sawtooth-like的特徵,隨者(n,0)內之指數n來決定,反觀在區域I,卻呈現相反關係,與極小管徑奈米碳管之狀態相似;而整體電子場發射過程,其電子的貢獻主要來自於硼元素鄰近之碳原子的p軌域價電子,其餘合成元素之電子貢獻則相對較為弱勢。
一維奈米碳材料透過摻雜和合成之技術,將影響其結構幾何和電學性質的改變,對其應用上將可帶來多樣化發展,未來將可以作為奈米尺度電子元件的理論參考依據。
The first principle theory is employed to investigate the physical properties of one-dimensional nano carbon materials, for instance of pristine and doped carbon nanotubes, and BC2N nanotubes. However, the classification rule of electronic structures in carbon nanotube was demolished by previous experimental studies, depending on the curvature effects rather than the chirality. Consequently, many applications might be changed due to above misjudgment. Therefore, the thesis is focused to investigate the relations between the electron structures and field emission of one-dimensional nano carbon materials.
The carbon nanotubes are used in field emission source due to their unique high aspect ratio. For the infinite ultra small carbon nanotubes, the high work function will be obtained by the accompanying decrease of the Fermi energy, different to the concept of the super tip. On the contrary, for the open-ended carbon nanotubes, the no-bonding valence electrons induced at the mouth layer after geometrical relaxations are corresponding to the variation of work functions. The localized states at the mouth layer of the open-ended (3,0) and (5,0) exhibit the stable sp3-like and sp2 structures, which will influence the occupied and the unoccupied states near the Fermi level and improve the field emission properties of infinite carbon nanotubes.
From eight possible B/N co-doping configurations, it is found that the one with substitutional B and N atoms located at neighboring sites has the smaller formation energy than that with separate B/N atoms. The electronic structure of armchair carbon nanotubes evolves from metallic to semiconducting as a result of B/N co-doping, whereas the energy gaps of the intrinsically semiconducting nanotubes are reduced significantly. On the contrary, the small zigzag nanotubes always remain metallic properties due to their large curvature effects except (5,0) after B/N co-doping. As the atomic concentration of B/N co-doping is increased, the energy gaps of carbon nanotubes oscillate around a constant level, which is much lower than the energy gap of BC2N nanotubes. Moreover, the B/N co-doped carbon nanotubes with B- or N-rich impurity exhibit the characteristics of an acceptor or donor, respectively, since their electronic structures are significantly influenced by the occupied states in the valence and conduction bands due to the shifting of Fermi level.
From the synthesis technology, the composite BC2N nanotubes can be fabricated with the specific stoichiometry, different to doping or substitution process. Most of BC2N nanotubes are semiconducting besides (5,0), which presents the metallic behavior and has a larger work function. In the region II, the work function of zigzag BC2N nanotubes, corresponding to their energy gap, shows an interesting sawtooth-like feature, depending on n is odd or even. During the field emission, the p-orbital of carbon atom near boron atom contributed more electrons emitting to vacuum level than other elements of BC2N nanotubes.
The one-dimensional nano carbon materials through synthesis and substitution technologies influence the geometrical optimization and electronic structures, which bring more potential applications. Therefore, the development of future high-performance nanoscale electronic devices might refer to these theoretical studies.
[1]楊素華 和 藍慶忠, “奈米碳管場發射顯示器”, 科學發展, 382(10), 68-71, 2004.
[2] 黃宣宜, “場發射顯示器技術現況與發展”, 光連, 39, 57-64, 2002.
[3]Fursey G., “Field emission in vacuum microelectronics”, New York: Springer, 2005.
[4]Saito R., Dresselhaus G. and Dresselhaus M.S., “Physical properties of carbon nanotubes”, London: Imperial College Press, 1998.
[5]Ouyang M., Huang J.L., Cheung C.L. and Lieber C.M., “Energy gaps in "metallic" single-walled carbon nanotubes”, Science, 292(5517), 702-705, 2001.
[6]Fowler R.H. and Nordheim L., “Electron emission in intense electric fields”, Proc. R. Soc. Lond. A, 119(781), 173-181, 1928.
[7]Nordheim L.W., “The effect of the image force on the emission and reflexion of electrons by metals”, Proc. R. Soc. Lond. A, 121(788), 626-639, 1928.
[8]Kalbitzer S. and Knoblauch A., “Multipurpose nanobeam source with supertip emitter”, J. Vac. Sci. Technol. B, 16(4), 2455-2461, 1998.
[9]Rinzler A.G., Hafner J.H., Nikolaev P., Nordlander P., Colbert D.T., Smalley R.E., Lou L., et al., “Unraveling nanotubes: Field emission from an atomic wire”, Science, 269(5230), 1550-1553, 1995.
[10]de Heer W.A., Châelain A. and Ugarte D., “A carbon nanotube field-emission electron source”, Science, 270(5239), 1179-1180, 1995.
[11]Choi W.B., Chung D.S., Kang J.H., Kim H.Y., Jin Y.W., Han I.T., Lee Y.H., et al., “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., 75(20), 3129-3131, 1999.
[12]Suzuki S., Watanabe Y., Homma Y., Fukuba S.y., Heun S. and Locatelli A., “Work functions of individual single-walled carbon nanotubes”, Appl. Phys. Lett., 85(1), 127-129, 2004.
[13]de Jonge N., Allioux M., Doytcheva M., Kaiser M., Teo K.B.K., Lacerda R.G. and Milne W.I., “Characterization of the field emission properties of individual thin carbon nanotubes”, Appl. Phys. Lett., 85(9), 1607-1609, 2004.
[14]Bonard J.M., Croci M., Klinke C., Kurt R., Noury O. and Weiss N., “Carbon nanotube films as electron field emitters”, Carbon, 40(10), 1715-1728, 2002.
[15]Gröning O., Küttel O.M., Emmenegger C., Gröning P. and Schlapbach L., “Field emission properties of carbon nanotubes”, J. Vac. Sci. Technol. B, 18(2), 665-678, 2000.
[16]Han S. and Ihm J., “Role of the localized states in field emission of carbon nanotubes”, Phys. Rev. B, 61(15), 9986-9989, 2000.
[17]Adessi C. and Devel M., “Theoretical study of field emission by single-wall carbon nanotubes”, Phys. Rev. B, 62(20), R13314, 2000.
[18]Kim C., Kim B., Lee S.M., Jo C. and Lee Y.H., “Effect of electric field on the electronic structures of carbon nanotubes”, Appl. Phys. Lett., 79(8), 1187-1189, 2001.
[19]Zhou G., Duan W. and Gu B., “Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes”, Phys. Rev. Lett., 87(9), 095504, 2001.
[20]Han S. and Ihm J., “First-principles study of field emission of carbon nanotubes”, Phys. Rev. B, 66(24), 241402, 2002.
[21]Zhou G. and Duan W., “Atomic-vacancy effects on field electron emission of carbon nanotubes: A first-principles study”, Chem. Phys. Lett., 423(1-3), 229-233, 2006.
[22]Kim C., Seo K., Kim B., Park N., Choi Y.S., Park K.A. and Lee Y.H., “Tip-functionalized carbon nanotubes under electric fields”, Phys. Rev. B, 68(11), 115403, 2003.
[23]Kim C., Kim B., Lee S.M., Jo C. and Lee Y.H., “Electronic structures of capped carbon nanotubes under electric fields”, Phys. Rev. B, 65(16), 165418, 2002.
[24]Chen C.W., Lee M.H. and Clark S.J., “Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study”, Appl. Surf. Sci., 228(1-4), 143-150, 2004.
[25]Chen C.W. and Lee M.H., “Dependence of workfunction on the geometries of single-walled carbon nanotubes”, Nanotechnology, 15(5), 480-484, 2004.
[26]Sanchez J.A. and Mengüç M.P., “Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission”, Nanotechnology, 19(7), 075702, 2008.
[27]Zhao J., Han J. and Lu J.P., “Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles”, Phys. Rev. B, 65(19), 193401, 2002.
[28]Shan B. and Cho K., “First principles study of work functions of single wall carbon nanotubes”, Phys. Rev. Lett., 94(23), 236602, 2005.
[29]Barone V., Peralta J.E., Uddin J. and Scuseria G.E., “Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes”, J. Chem. Phys., 124(2), 024709, 2006.
[30]Su W.S., Leung T.C., Li B. and Chan C.T., “Work function of small radius carbon nanotubes and their bundles”, Appl. Phys. Lett., 90(16), 163103, 2007.
[31]Su W.S., Leung T.C. and Chan C.T., “Work function of single-walled and multiwalled carbon nanotubes: First-principles study”, Phys. Rev. B, 76(23), 235413, 2007.
[32]Shan B. and Cho K., “First-principles study of work functions of double-wall carbon nanotubes”, Phys. Rev. B, 73(8), 081401, 2006.
[33]Maiti A., Andzelm J., Tanpipat N. and von Allmen P., “Effect of adsorbates on field emission from carbon nanotubes”, Phys. Rev. Lett., 87(15), 155502, 2001.
[34]Chen C.W. and Lee M.H., “Ab initio calculations of dimensional and adsorbate effects on the workfunction of single-walled carbon nanotube”, Diam. Relat. Mat., 12(3-7), 565-571, 2003.
[35]Luo J., Zhang Z.X., Peng L.M., Xue Z.Q. and Wu J.L., “Calculations of adsorption of O2 and H2O on a carbon nanotube tip in field-emission conditions”, J. Phys. D: Appl. Phys., 36(23), 3034-3038, 2003.
[36]Qiao L., Zheng W.T., Wen Q.B. and Jiang Q., “First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes”, Nanotechnology, 18(15), 155707, 2007.
[37]Zhao G., Zhang Q., Zhang H., Yang G., Zhou O., Qin L.C. and Tang J., “Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices”, Appl. Phys. Lett., 89(26), 263113, 2006.
[38]Charlier J.C., Terrones M., Baxendale M., Meunier V., Zacharia T., Rupesinghe N.L., Hsu W.K., et al., “Enhanced electron field emission in B-doped carbon nanotubes”, Nano Lett., 2(11), 1191-1195, 2002.
[39]Chan L.H., Hong K.H., Xiao D.Q., Hsieh W.J., Lai S.H., Shih H.C., Lin T.C., et al., “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes”, Appl. Phys. Lett., 82(24), 4334-4336, 2003.
[40]Doytcheva M., Kaiser M., Verheijen M.A., Reyes-Reyes M., Terrones M. and de Jonge N., “Electron emission from individual nitrogen-doped multi-walled carbon nanotubes”, Chem. Phys. Lett., 396(1-3), 126-130, 2004.
[41]Sharma R.B., Late D.J., Joag D.S., Govindaraj A. and Rao C.N.R., “Field emission properties of boron and nitrogen doped carbon nanotubes”, Chem. Phys. Lett., 428(1-3), 102-108, 2006.
[42]Ahn H.S., Lee K.R., Kim D.Y. and Han S., “Field emission of doped carbon nanotubes”, Appl. Phys. Lett., 88(9), 093122, 2006.
[43]Qiao L., Zheng W.T., Xu H., Zhang L. and Jiang Q., “Field emission properties of N-doped capped single-walled carbon nanotubes: A first-principles density-functional study”, J. Chem. Phys., 126(16), 164702, 2007.
[44]Wen Q.B., Qiao L., Zheng W.T., Zeng Y., Qu C.Q., Yu S.S. and Jiang Q., “Theoretical investigation on different effects of nitrogen and boron substitutional impurities on the structures and field emission properties for carbon nanotubes”, Physica E, 40(4), 890-893, 2008.
[45]Yoo J.B., Han J.H., Choi S.H., Lee T.Y., Park C.Y., Jeong T.W., Lee J.H., et al., “Emission characteristics of boron nitride coated carbon nanotubes”, Physica B, 323(1-4), 180-181, 2002.
[46]Sugino T., Kimura C. and Yamamoto T., “Electron field emission from boron-nitride nanofilms”, Appl. Phys. Lett., 80(19), 3602-3604, 2002.
[47]Kimura C., Yamamoto T., Funakawa S., Hirakawa M., Murakami H. and Sugino T., “Electron field emission from boron nitride nanofilm and its application to graphite nanofiber”, J. Vac. Sci. Technol. B, 21(5), 2212-2216, 2003.
[48]Park N., Han S. and Ihm J., “Field emission properties of carbon nanotubes coated with boron nitride”, J. Nanosci. Nanotechnol., 3(1-2), 179-183, 2003.
[49]Sugino T., Yamamoto T., Kimura C., Murakami H. and Hirakawa M., “Field emission characteristics of carbon nanofiber improved by deposition of boron nitride nanocrystalline film”, Appl. Phys. Lett., 80(20), 3808-3810, 2002.
[50]Su C.Y., Juang Z.Y., Chen Y.L., Leou K.C. and Tsai C.H., “The field emission characteristics of carbon nanotubes coated by boron nitride film”, Diam. Relat. Mat., 16(4-7), 1393-1397, 2007.
[51]Morihisa Y., Kimura C., Yukawa M., Aoki H., Kobayashi T., Hayashi S., Akita S., et al., “Improved field emission characteristics of individual carbon nanotube coated with boron nitride nanofilm”, J. Vac. Sci. Technol. B, 26(2), 872-875, 2008.
[52]Golberg D., Dorozhkin P.S., Bando Y., Dong Z.C., Tang C.C., Uemura Y., Grobert N., et al., “Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx ( x <0.1)”, Appl. Phys. A, 76(4), 499-507, 2003.
[53]Golberg D., Dorozhkin P.S., Bando Y., Dong Z.C., Grobert N., Reyes-Reyes M., Terrones H., et al., “Cables of BN-insulated B-C-N nanotubes”, Appl. Phys. Lett., 82(8), 1275-1277, 2003.
[54]Zhi C.Y., Guo J.D., Bai X.D. and Wang E.G., “Adjustable boron carbonitride nanotubes”, J. Appl. Phys., 91(8), 5325-5333, 2002.
[55]Bai X.D., Guo J.D., Yu J., Wang E.G., Yuan J. and Zhou W., “Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers”, Appl. Phys. Lett., 76(18), 2624-2626, 2000.
[56]Dorozhkin P., Golberg D., Bando Y. and Dong Z.C., “Field emission from individual B-C-N nanotube rope”, Appl. Phys. Lett., 81(6), 1083-1085, 2002.
[57]Iijima S., “Helical microtubules of graphitic carbon”, Nature, 354(6348), 56-58, 1991.
[58]Harris P.J.F., “Carbon nanotubes and related structures: new materials for the twenty-first century”, Cambridge: Cambridge University Press, 1999.
[59]Dresselhaus M.S., Dresselhaus G. and Avouris P., “Carbon nanotubes: synthesis, structure, properties, and applications”, Berlin: Springer, 2001.
[60]成會明, “奈米碳管 ”, 台北: 五南圖書出版股份有限公司, 2004.
[61]Reich S., Thomsen C. and Maultzsch J., “Carbon nanotubes: basic concepts and physical properties”, Weinheim: Wiley-VCH, 2004.
[62]Jorio A., Dresselhaus G. and Dresselhaus M.S., “Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications”, Berlin: Springer, 2008.
[63]Weisman R.B., “Simplifying carbon nanotube identification”, The Industrial Physicist, 10(1), 24-27, 2004.
[64]Saito R., Fujita M., Dresselhaus G. and Dresselhaus M.S., “Electronic structure of chiral graphene tubules”, Applied Physics Letters, 60(18), 2204-2206, 1992.
[65]Hamada N., Sawada S.I. and Oshiyama A., “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett., 68(10), 1579-1581, 1992.
[66]Charlier J.C., Blase X. and Roche S., “Electronic and transport properties of nanotubes”, Rev. Mod. Phys., 79(2), 677, 2007.
[67]Blase X., Benedict L.X., Shirley E.L. and Louie S.G., “Hybridization effects and metallicity in small radius carbon nanotubes”, Phys. Rev. Lett., 72(12), 1878-1881, 1994.
[68]Miyake T. and Saito S., “Band-gap formation in (n,0) single-walled carbon nanotubes (n = 9,12,15,18): A first-principles study”, Phys. Rev. B, 72(7), 073404, 2005.
[69]Borštnik U., Hodošček M., Janežič D. and Lukovits I., “Electronic structure properties of carbon nanotubes obtained by density functional calculations”, Chem. Phys. Lett., 411(4-6), 384-388, 2005.
[70]Sun G., Kürti J., Kertesz M. and Baughman R.H., “Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection”, J. Phys. Chem. B, 107(29), 6924-6931, 2003.
[71]Miyake T. and Saito S., “Quasiparticle band structure of carbon nanotubes”, Phys. Rev. B, 68(15), 155424, 2003.
[72]Zhao X., Liu Y., Inoue S., Suzuki T., Jones R.O. and Ando Y., “Smallest carbon nanotube is 3 Å in diameter”, Phys. Rev. Lett., 92(12), 125502, 2004.
[73]Guan L., Suenaga K. and Iijima S., “Smallest carbon nanotube assigned with atomic resolution accuracy”, Nano Lett., 8(2), 459-462, 2008.
[74]Cox B.J. and Hill J.M., “Geometric structure of ultra-small carbon nanotubes”, Carbon, 46(4), 711-713, 2008.
[75]Peng L.M., Zhang Z.L., Xue Z.Q., Wu Q.D., Gu Z.N. and Pettifor D.G., “Stability of carbon nanotubes: How small can they be?”, Phys. Rev. Lett., 85(15), 3249-3252, 2000.
[76]Mao Y.L., Yan X.H., Xiao Y., Xiang J., Yang Y.R. and Yu H.L., “The viability of 0.3 nm diameter carbon nanotubes”, Nanotechnology, 15(8), 1000-1003, 2004.
[77]Mao Y.L., Yan X.H., Xiao Y., Xiang J., Yang Y.R. and Yu H.L., “First-principles study of the (2,2) carbon nanotube”, Phys. Rev. B, 71(3), 033404, 2005.
[78]Mohammadizadeh M.R., “Structural and electronic properties of ultra-small radius SWCNT”, Physica E, 31(1), 31-37, 2006.
[79]Scipioni R., “Is the smallest carbon nanotube (2,2) a metal or a semiconductor?”, Phys. Status Solidi B-Basic Solid State Phys., 244(9), 3137-3142, 2007.
[80]Kamal C. and Chakrabarti A., “Comparison of electronic and geometric structures of nanotubes with subnanometer diameters: A density functional theory study”, Phys. Rev. B, 76(7), 075113, 2007.
[81]Tang Z.K., Zhai J.P., Tong Y.Y., Hu X.J., Saito R., Feng Y.J. and Sheng P., “Resonant Raman Scattering of the Smallest Single-Walled Carbon Nanotubes”, Phys. Rev. Lett., 101(4), 047402, 2008.
[82]Kwon Y.K., Lee Y.H., Kim S.G., Jund P., Tománek D. and Smalley R.E., “Morphology and stability of growing multiwall carbon nanotubes”, Phys. Rev. Lett., 79(11), 2065, 1997.
[83]Park C.J., Kim Y.H. and Chang K.J., “Band-gap modification by radial deformation in carbon nanotubes”, Phys. Rev. B, 60(15), 10656, 1999.
[84]Lu J.Q., Wu J., Duan W., Liu F., Zhu B.F. and Gu B.L., “Metal-to-semiconductor transition in squashed armchair carbon nanotubes”, Phys. Rev. Lett., 90(15), 156601, 2003.
[85]Sreekala S., Peng X.H., Ajayan P.M. and Nayak S.K., “Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: First-principles density-functional calculations”, Phys. Rev. B, 77(15), 155434, 2008.
[86]Yi J.Y. and Bernholc J., “Atomic structure and doping of microtubules”, Phys. Rev. B, 47(3), 1708-1711, 1993.
[87]Carroll D.L., Redlich P., Blase X., Charlier J.C., Curran S., Ajayan P.M., Roth S., et al., “Effects of nanodomain formation on the electronic structure of doped carbon nanotubes”, Phys. Rev. Lett., 81(11), 2332-2335, 1998.
[88]Zhou Z., Gao X., Yan J., Song D. and Morinaga M., “A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes”, Carbon, 42(12-13), 2677-2682, 2004.
[89]Simeon T.M., Yanov I. and Leszczynski J., “Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [X=Si, Ge, Sn], C59X- [X=B, Al, Ga, In], and C59X+ [X=N, P, As, Sb]”, Int. J. Quantum Chem., 105(4), 429-436, 2005.
[90]Zhang C., Li R., Zhang D., Shang Z., Wang G., Liang Y., Xing Y., et al., “Theoretical explorations on BN-doped armchair single-walled carbon nanotubes”, Theochem-J. Mol. Struct., 765(1-3), 1-11, 2006.
[91]Yu S.S., Zheng W.T., Wen Q.B., Zheng B., Tian H.W. and Jiang Q., “Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations”, IEEE Trans. Nanotechnol., 5(5), 595-598, 2006.
[92]Koretsune T. and Saito S., “Electronic structure of boron-doped carbon nanotubes”, Phys. Rev. B, 77(16), 165417, 2008.
[93]Czerw R., Terrones M., Charlier J.C., Blase X., Foley B., Kamalakaran R., Grobert N., et al., “Identification of electron donor states in N-Doped carbon nanotubes”, Nano Lett., 1(9), 457-460, 2001.
[94]Zhao M., Xia Y., Ma Y., Ying M., Liu X. and Mei L., “Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes”, Phys. Rev. B, 66(15), 155403, 2002.
[95]Nevidomskyy A.H., Csányi G. and Payne M.C., “Chemically active substitutional nitrogen impurity in carbon nanotubes”, Phys. Rev. Lett., 91(10), 105502, 2003.
[96]Zhao M., Xia Y., Lewis J.P. and Zhang R., “First-principles calculations for nitrogen-containing single-walled carbon nanotubes”, J. Appl. Phys., 94(4), 2398-2402, 2003.
[97]Kang H.S. and Jeong S., “Nitrogen doping and chirality of carbon nanotubes”, Phys. Rev. B, 70(23), 233411, 2004.
[98]Bulusheva L.G., Okotrub A.V., Kudashov A.G., Asanov I.P. and Abrosimov O.G., “Electronic state of nitrogen incorporated into CNx nanotubes”, Eur. Phys. J. D, 34(1-3), 271-274, 2005.
[99]Ma Y., Foster A.S., Krasheninnikov A.V. and Nieminen R.M., “Nitrogen in graphite and carbon nanotubes: Magnetism and mobility”, Phys. Rev. B, 72(20), 205416, 2005.
[100]Quiñonero D., Frontera A., Garau C., Costa A., Ballester P. and Deyà P.M., “Ab initio investigations of lithium insertion in boron and nitrogen-doped single-walled carbon nanotubes”, Chem. Phys. Lett., 411(1-3), 256-261, 2005.
[101]Yu S.S., Wen Q.B., Zheng W.T. and Jiang Q., “Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations”, Nanotechnology, 18(16), 165702, 2007.
[102]Lim S.H., Li R., Ji W. and Lin J., “Effects of nitrogenation on single-walled carbon nanotubes within density functional theory”, Phys. Rev. B, 76(19), 195406, 2007.
[103]Wei J., Hu H., Zeng H., Zhou Z., Yang W. and Peng P., “Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube”, Physica E, 40(3), 462-466, 2008.
[104]Min Y.S., Bae E.J., Kim U.J., Lee E.H., Park N., Hwang C.S. and Park W., “Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes”, Appl. Phys. Lett., 93(4), 043113, 2008.
[105]Zhou C., Kong J., Yenilmez E. and Dai H., “Modulated chemical doping of individual carbon nanotubes”, Science, 290(5496), 1552-1555, 2000.
[106]Khazaei M., Farajian A.A., Mizuseki H. and Kawazoe Y., “Cs doping effects on electronic structure of thin nanotubes”, Comput. Mater. Sci., 36(1-2), 152-158, 2006.
[107]Ha B. and Lee C.J., “Electronic structure and field emission properties of in situ potassium-doped single-walled carbon nanotubes”, Appl. Phys. Lett., 90(2), 023108, 2007.
[108]Park N., Miyamoto Y., Lee K., Ih Choi W., Ihm J., Yu J. and Han S., “Band gap sensitivity of bromine adsorption at carbon nanotubes”, Chem. Phys. Lett., 403(1-3), 135-139, 2005.
[109]Zhu W. and Kaxiras E., “Electronic structure of Pd-covered (10,0) carbon nanotube”, Phys. Status Solidi B-Basic Solid State Phys., 243(9), 2164-2169, 2006.
[110]Oh H., Kim J.J., Song W., Moon S., Kim N., Kim J. and Park N., “Fabrication of n-type carbon nanotube field-effect transistors by Al doping”, Appl. Phys. Lett., 88(10), 103503, 2006.
[111]Chen G. and Kawazoe Y., “Interaction between a single Pt atom and a carbon nanotube studied by density functional theory”, Phys. Rev. B, 73(12), 125410, 2006.
[112]Meng T., Wang C.Y. and Wang S.Y., “First-principles study of the interactions of Ti and Zr with the tips of open-ended single-wall carbon nanotubes”, J. Phys.-Condes. Matter, 18(46), 10521-10528, 2006.
[113]Kim S.J., Park Y.J., Ra E.J., Kim K.K., An K.H., Lee Y.H., Choi J.Y., et al., “Defect-induced loading of Pt nanoparticles on carbon nanotubes”, Appl. Phys. Lett., 90(2), 023114, 2007.
[114]Zheng G.P. and Zhuang H.L., “Enhanced mechanical strength and ductility of metal-repaired defective carbon nanotubes: A density functional study”, Appl. Phys. Lett., 92(19), 191902, 2008.
[115]da Silva L.B., Fagan S.B., Mota R. and Fazzio A., “Silicon adsorption in defective carbon nanotubes: a first principles study”, Nanotechnology, 17(16), 4088-4091, 2006.
[116]Avramov P.V., Sorokin P.B., Fedorov A.S., Fedorov D.G. and Maeda Y., “Band-gap unification of partially Si-substituted single-wall carbon nanotubes”, Phys. Rev. B, 74(24), 245417, 2006.
[117]Liu A.Y., Wentzcovitch R.M. and Cohen M.L., “Atomic arrangement and electronic structure of BC2N”, Phys. Rev. B, 39(3), 1760-1765, 1989.
[118]Watanabe M.O., Itoh S., Mizushima K. and Sasaki T., “Bonding characterization of BC2N thin films”, Appl. Phys. Lett., 68(21), 2962-2964, 1996.
[119]Miyamoto Y., Rubio A., Cohen M.L. and Louie S.G., “Chiral tubules of hexagonal BC2N”, Phys. Rev. B, 50(7), 4976-4979, 1994.
[120]Stephan O., Ajayan P.M., Colliex C., Redlich P., Lambert J.M., Bernier P. and Lefin P., “Doping graphitic and carbon nanotube structures with boron and nitrogen”, Science, 266(5191), 1683-1685, 1994.
[121]Redlich P., Loeffler J., Ajayan P.M., Bill J., Aldinger F. and Rühle M., “B-C-N nanotubes and boron doping of carbon nanotubes”, Chem. Phys. Lett., 260(3-4), 465-470, 1996.
[122]Kohler-Redlich P., Terrones M., Manteca-Diego C., Hsu W.K., Terrones H., Rühle M., Kroto H.W., et al., “Stable BC2N nanostructures: low-temperature production of segregated C/BN layered materials”, Chem. Phys. Lett., 310(5-6), 459-465, 1999.
[123]Han W.Q., Cumings J., Huang X., Bradley K. and Zettl A., “Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route”, Chem. Phys. Lett., 346(5-6), 368-372, 2001.
[124]Terrones M., Grobert N. and Terrones H., “Synthetic routes to nanoscale BxCyNz architectures”, Carbon, 40(10), 1665-1684, 2002.
[125]Zettl A., “Non-carbon nanotubes”, Adv. Mater., 8(5), 443-445, 1996.
[126]Golberg D., Bando Y., Han W., Kurashima K. and Sato T., “Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction”, Chem. Phys. Lett., 308(3-4), 337-342, 1999.
[127]Yu J., Zhang Q., Ahn J., Yoon S.F., Rusli, Gan B., Chew K., et al., “Growth and structure of aligned B-C-N nanotubes”, J. Vac. Sci. Technol. B, 19(3), 671-674, 2001.
[128]Enouz S., Stéphan O., Glerup M., Cochon J.L., Colliex C. and Loiseau A., “Synthesis and structure of BN-doped multi-walled and single-walled carbon nanotubes”, Phys. Status Solidi B-Basic Solid State Phys., 243(13), 3246-3251, 2006.
[129]Golberg D., Bando Y., Bourgeois L., Kurashima K. and Sato T., “Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles”, Carbon, 38(14), 2017-2027, 2000.
[130]Weng-Sieh Z., Cherrey K., Chopra N.G., Blase X., Miyamoto Y., Rubio A., Cohen M.L., et al., “Synthesis of BxCyNz nanotubules”, Phys. Rev. B, 51(16), 11229-11232, 1995.
[131]Blase X., Charlier J.C., De Vita A. and Car R., “Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions”, Appl. Phys. A, 68(3), 293-300, 1999.
[132]Blase X., “Properties of composite BxCyNz nanotubes and related heterojunctions”, Comput. Mater. Sci., 17(2-4), 107-114, 2000.
[133]Mazzoni M.S.C., Nunes R.W., Azevedo S. and Chacham H., “Electronic structure and energetics of BxCyNz layered structures”, Phys. Rev. B, 73(7), 073108, 2006.
[134]Guo C.S., Fan W.J., Chen Z.H. and Zhang R.Q., “First-principles study of single-walled armchair Cx(BN)y nanotubes”, Solid State Commun., 137(10), 549-552, 2006.
[135]Azevedo S., “Energetic and electronic structure of BC2N compounds”, Eur. Phys. J. B, 44(2), 203-207, 2005.
[136]Blase X., Charlier J.C., De Vita A. and Car R., “Theory of composite BxCyNz nanotube heterojunctions”, Appl. Phys. Lett., 70(2), 197-199, 1997.
[137]Choi J., Kim Y.H., Chang K.J. and Tománek D., “Itinerant ferromagnetism in heterostructured C/BN nanotubes”, Phys. Rev. B, 67(12), 125421, 2003.
[138]Pan H., Feng Y.P. and Lin J.Y., “First-principles study of optical spectra of single-wall BC2N nanotubes”, Phys. Rev. B, 73(3), 035420, 2006.
[139]Rossato J., Baierle R.J. and Orellana W., “Stability and electronic properties of vacancies and antisites in BC2N nanotubes”, Phys. Rev. B, 75(23), 235401, 2007.
[140]Matos M., Azevedo S. and Kaschny J.R., “On the structural properties of B-C-N nanotubes”, Solid State Commun., 149(5-6), 222-226, 2009.
[141]Azevedo S., de Paiva R. and Kaschny J.R., “Stability and electronic structure of BxNyCz nanotubes”, J. Phys.-Condes. Matter, 18(48), 10871-10879, 2006.
[142]Pan H., Feng Y.P. and Lin J., “Ab initio study of single-wall BC2N nanotubes”, Phys. Rev. B, 74(4), 045409, 2006.
[143]Watanabe M.O., Itoh S., Sasaki T. and Mizushima K., “Visible-light-emitting layered BC2N semiconductor”, Phys. Rev. Lett., 77(1), 187-189, 1996.
[144]Yu J., Ahn J., Yoon S.F., Zhang Q., Rusli, Gan B., Chew K., et al., “Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers”, Appl. Phys. Lett., 77(13), 1949-1951, 2000.
[145]Terrones M., Golberg D., Grobert N., Seeger T., Reyes-Reyes M., Mayne M., Kamalakaran R., et al., “Production and state-of-the-art characterization of aligned nanotubes with homogeneous BCxN (1≦x≦5) compositions”, Adv. Mater., 15(22), 1899-1903, 2003.
[146]Liao L., Liu K., Wang W., Bai X., Wang E., Liu Y., Li J., et al., “Multiwall boron carbonitride/carbon nanotube junction and its rectification behavior”, J. Am. Chem. Soc., 129(31), 9562-9563, 2007.
[147]Gomer R., “Field emission and field ionization”, New York: American Institute of Physics, 1993.
[148]Modinos A., “Field, thermionic, and secondary electron emission spectroscopy”, New York: Plenum Press, 1984.
[149]Kirkpatrick D.A., Mankofsky A. and Tsang K.T., “Analysis of field emission from three-dimensional structures”, Appl. Phys. Lett., 60(17), 2065-2067, 1992.
[150]Hong D., Aslam M., Feldmann M. and Olinger M., “Simulations of fabricated field emitter structures”, J. Vac. Sci. Technol. B, 12(2), 764-769, 1994.
[151]Myers G.P., Aslam M., Klimecky P., Cathey L.W., Elder R.E. and Artz B.E., “Fabrication and characterization of electron beam evaporated silicon field emitter arrays”, J. Vac. Sci. Technol. B, 11(3), 642-646, 1993.
[152]Lovall D., Buss M., Graugnard E., Andres R.P. and Reifenberger R., “Electron emission and structural characterization of a rope of single-walled carbon nanotubes”, Phys. Rev. B, 61(8), 5683, 2000.
[153]Ito F., Konuma K. and Okamoto A., “Electron emission from single-walled carbon nanotubes with sharpened bundles”, J. Appl. Phys., 89(12), 8141-8145, 2001.
[154]Seelaboyina R., Boddepalli S., Noh K., Jeon M. and Choi W., “Enhanced field emission from aligned multistage carbon nanotube emitter arrays”, Nanotechnology, 19(6), 065605, 2008.
[155]Suzuki S., Bower C., Watanabe Y. and Zhou O., “Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles”, Appl. Phys. Lett., 76(26), 4007-4009, 2000.
[156]Ago H., Kugler T., Cacialli F., Salaneck W.R., Shaffer M.S.P., Windle A.H. and Friend R.H., “Work functions and surface functional groups of multiwall carbon nanotubes”, J. Phys. Chem. B, 103(38), 8116-8121, 1999.
[157]趙成大, “固體量子化學 - 材料化學的理論基礎 ”, 2nd ed, 北京: 高等教育出版社, 2003.
[158]Andrew R. L., “Molecular modelling: principles and applications”, 2nd ed, New York: Prentice Hall, 2001.
[159]Kittel C., “Introduction to solid state physics”, 8th ed, NJ: Wiley, 2005.
[160]Hohenberg P. and Kohn W., “Inhomogeneous electron gas”, Phys. Rev., 136(3B), B864, 1964.
[161]Kohn W. and Sham L.J., “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140(4A), A1133, 1965.
[162]Ohno K., Esfarjani K. and Kawazoe Y., “Computational materials science :from ab initio to Monte Carlo methods”, Berlin: Springer, 1999.
[163]Gunnarsson O. and Lundqvist B.I., “Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism”, Phys. Rev. B, 13(10), 4274-4298, 1976.
[164]Ceperley D.M. and Alder B.J., “Ground state of the electron gas by a stochastic method”, Phys. Rev. Lett., 45(7), 566-569, 1980.
[165]von Barth U. and Hedin L., “A local exchange-correlation potential for the spin polarized case: I”, J. Phys. C, 5(13), 1629-1642, 1972.
[166]Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J. and Fiolhais C., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation”, Phys. Rev. B, 46(11), 6671-6687, 1992.
[167]Payne M.C., Teter M.P., Allan D.C., Arias T.A. and Joannopoulos J.D., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys., 64(4), 1045-1097, 1992.
[168]Kresse G. and Furthmüller J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci., 6(1), 15-50, 1996.
[169]Vanderbilt D., “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Phys. Rev. B, 41(11), 7892-7895, 1990.
[170]Lang N.D. and Kohn W., “Theory of metal surfaces: work function”, Phys. Rev. B, 3(4), 1215-1223, 1971.
[171]Lang N.D., “Theory of work-function changes induced by alkali adsorption”, Phys. Rev. B, 4(12), 4234-4244, 1971.
[172]Fall C.J., Binggeli N. and Baldereschi A., “Deriving accurate work functions from thin-slab calculations”, J. Phys.: Condens. Matter, 11(13), 2689-2696, 1999.
[173]Lozovoi A.Y., Alavi A., Kohanoff J. and Lynden-Bell R.M., “Ab initio simulation of charged slabs at constant chemical potential”, J. Chem. Phys., 115(4), 1661-1669, 2001.
[174]Rusu P.C. and Brocks G., “Work functions of self-assembled monolayers on metal surfaces by first-principles calculations”, Phys. Rev. B, 74(7), 073414, 2006.
[175]Monkhorst H.J. and Pack J.D., “Special points for Brillouin-zone integrations”, Phys. Rev. B, 13(12), 5188-5192, 1976.
[176]Xu Z., Lu W., Wang W., Gu C., Liu K., Bai X., Wang E., et al., “Converting metallic single-walled carbon nanotubes into semiconductors by boron/nitrogen co-doping”, Adv. Mater., 20(19), 3615-3619, 2008.
[177]Alexandre S.S., Chacham H. and Nunes R.W., “Structure and energetics of boron nitride fullerenes: The role of stoichiometry”, Phys. Rev. B, 63(4), 045402, 2001.
[178]Masago A., Shirai K. and Katayama-Yoshida H., “Crystal stability of α- and β-boron”, Phys. Rev. B, 73(10), 104102, 2006.
[179]Qiao L., Zheng W.T., Xu H., Zhang L. and Jiang Q., “Field emission properties of N-doped capped single-walled carbon nanotubes: A first-principles density-functional study”, J. Chem. Phys., 126(16), 164702, 2007.
[180]曾耀寰, “企鵝雄兵:以 Linux 進行電腦叢集計算 ”, 台北市: 和碩科技文化出版, 2001.
[181]Tsai C.F., Marty's Linux Cluster 架設日誌. Available from: http://web.csie.chu.edu.tw/~cs87668/cluster.htm
[182]鳥哥, “鳥哥的Linux私房菜 - 伺服器架設篇 ”, 2nd ed, 台北市: 上奇科技, 2007.
[183]林銘杰 and 黃國華, “以64位元北歐武夫電腦叢集進行第一原理計算”, 物理雙月刊, 27(4), 592-601, 2005.