| 研究生: |
徐陞達 Hsu, Sheng-Da |
|---|---|
| 論文名稱: |
國家數位化程度、能源轉型效率與碳排放之關聯性研究 The Relationship between Digitalization, Energy Transition Efficiency, and Carbon Emissions |
| 指導教授: |
廖麗凱
Liao, Li-Kai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 數位化程度 、世界數位競爭力 、能源轉型 、能源轉型指標 、碳排放 |
| 外文關鍵詞: | Digitalization, World Digital Competitiveness, Energy transition, Energy transition index, Carbon emissions |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在全球面臨氣候變遷與數位經濟快速發展的背景下,「經濟數位化」與「環境永續」之間可能存在潛在衝突,譬如:雲端運算、資料中心與資通訊設備所造成的能源與碳排負擔,在全球已是備受矚目的議題。如何兼顧經濟數位化與環境永續,是各國政策制定的關鍵課題之一。本研究旨在探討國家(或經濟體)層級的數位化程度與碳排放之關聯性,並進一步分析能源轉型效率是否具有調節效果。本研究以瑞士洛桑國際管理發展學院所發布之「世界數位競爭力排名」與其三大因素(科技環境、知識基礎和未來就緒性)衡量數位化程度,並採用世界經濟論壇所制定之「能源轉型指標」作為能源轉型效率之代理變數。
本研究實證資料涵蓋 2017 至 2023 年間共59個國家資料,並採用固定效果模型進行分析,以控制潛在各國家之異質性與時間效應。結果顯示,知識基礎因素水準與碳排放呈顯著負相關,表示在跨國資料中,數位化程度之知識基礎與人力品質為減碳的主要驅動因子;而未來就緒性因素水準則暗示與碳排可能具有正相關性,反映數位應用越好的國家碳排放可能就會越高。此外,能源轉型效率對數位化程度與碳排放之關係具顯著調節作用,能強化數位化程度與未來就緒性因素之減碳效果或削弱其增碳風險。而根據製造業比例進行分組的額外測試結果顯示,高製造業的國家整體數位化程度與未來就緒性因素水準越高碳排放就越高,且更依賴能源轉型效率之調節效果。
本研究之主要貢獻包括:第一,有別於其他文獻以資通訊科技作為數位化程度之衡量,首度以世界數位競爭力全面檢視國家整體數位化程度與其三因素面對碳排放之異質性影響;第二,納入能源轉型效率作為調節因子,揭示數位化與碳排放關係之條件依賴性;第三,進一步針對不同製造業發展程度國家進行分組比較,提供更具針對性的結果啟示。研究結果將有助於理解數位轉型與低碳發展之整合潛力,並為全球邁向低碳經轉型提供實證基礎。
This study examines the relationship between national digitalization and carbon emissions, and the moderating role of energy transition efficiency. Digitalization is measured by the IMD World Digital Competitiveness Ranking and its three dimensions, while the World Economic Forum’s Energy Transition Index proxies energy transition efficiency. Using panel data for 59 countries (2017–2023) and fixed-effects models, results show that the Knowledge dimension reduces emissions, whereas Future Readiness may increase them. Energy transition efficiency significantly moderates these effects. In high-manufacturing economies, higher digitalization and Future Readiness are linked to greater emissions, with stronger reliance on energy transition efficiency. The findings highlight the heterogeneous carbon impacts of digitalization and the conditional role of energy transition in fostering low-carbon growth.
Acheampong, A. O. (2019). Modelling for insight: Does financial development improve environmental quality? Energy Economics, 83, 156–179. https://doi.org/10.1016/j.eneco.2019.06.025
Añón Higón, D., Gholami, R., & Shirazi, F. (2017). ICT and environmental sustainability: A global perspective. Telematics and Informatics, 34(1), 85–95. http://dx.doi.org/10.1016/j.tele.2017.01.001
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037//0022-3514.51.6.1173
Bian, H., & Meng, M. (2023). Carbon emission reduction potential and reduction strategy of China’s manufacturing industry. Journal of Cleaner Production, 423, 138718. https://doi.org/10.1016/j.jclepro.2023.138718
Bianchini, S., Damioli, G., & Ghisetti, C. (2022). The environmental effects of the “twin” green and digital transition in European regions. Environmental and Resource Economics, 84, 877–918. https://doi.org/10.1007/s10640-022-00741-7
Chen, S., Jin, H., & Lu, Y. (2019). Impact of Urbanization on CO2 Emissions and Energy Consumption Structure: A Panel Data Analysis for Chinese Prefecture-Level Cities. Structural Change and Economic Dynamics, 49, 107–119. https://doi.org/10.1016/j.strueco.2018.08.009
Cole, M. A., & Neumayer, E. (2004). Examining the impact of demographic factors on air pollution. Population and Environment, 26(1), 5-21.
Dietz, T., & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human ecology review, 1(2), 277-300. https://www.jstor.org/stable/24706840
Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179. https://doi.org/10.1073/pnas.94.1.175
Dinda, S., & Coondoo, D. (2006). Income and Emission: A Panel Data-Based Cointegration Analysis Author Links Open Overlay Panel. Ecological Economics, 57(2), 167–181. https://doi.org/10.1016/j.ecolecon.2005.03.028
Faisal, F., Azizullah, Tursoy, T., & Pervaiz, R. (2020). Does ICT lessen CO2 emissions for fast-emerging economies? An application of the heterogeneous panel estimations. Environmental Science and Pollution Research, 27, 10778–10789. https://doi.org/10.1007/s11356-019-07582-w
Fouquet, R., & Hippe, R. (2022). Twin transitions of decarbonisation and digitalisation: A historical perspective on energy and information in European economies. Energy Research & Social Science, 91, 102736. https://doi.org/10.1016/j.erss.2022.102736
Ganda, F. (2019). The impact of innovation and technology investments on carbon emissions in selected organisation for economic Co-operation and development countries. Journal of Cleaner Production, 217, 469–483. https://doi.org/10.1016/j.jclepro.2019.01.235
Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, DJ., et al. (2013) Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12): e81648. https://doi.org/10.1371/journal.pone.0081648
Hao, Y., Chen, H., Wei, Y. M., & Li, Y. M. (2016). The influence of climate change on CO2 (carbon dioxide) emissions: an empirical estimation based on Chinese provincial panel data. Journal of cleaner production, 131, 667-677. https://doi.org/10.1016/j.jclepro.2016.04.117
Haseeb, A., Xia, E., Saud, S., Ahmad, A., & Khurshid, H. (2019). Does information and communication technologies improve environmental quality in the era of globalization? An empirical analysis. Environmental Science and Pollution Research, 26(9), 8594–8608. https://doi.org/10.1007/s11356-019-04296-x
Huang, Y., & Zhang, Y. (2023). Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions. Ecological Economics, 205, 107674. https://doi.org/10.1016/j.ecolecon.2022.107674
Huisingh, D., Zhang, Zhihua, Moore, John C., Qiao, Q., & Li, qi . (2015). Recent Advances in Carbon Emissions Reduction: Policies, Technologies, Monitoring, Assessment and Modeling. Journal of Cleaner Production, 103, 1–12. https://doi.org/10.1016/j.jclepro.2015.04.098
IMD World Competitiveness Center. (2017). IMD World Digital Competitiveness Ranking 2017 . https://investcroatia.gov.hr/wp-content/uploads/2018/01/world_digital_competitiveness_yearbook_2017.pdf
Intergovernmental Panel on Climate Change. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development,and efforts to eradicate poverty. https://www.ipcc.ch/sr15/
International Energy Agency. (2017). Digitalisation and Energy. https://www.iea.org/reports/digitalisation-and-energy
International Energy Agency. (2024). CO2 Emissions in 2023. https://iea.blob.core.windows.net/assets/33e2badc-b839-4c18-84ce-f6387b3c008f/CO2Emissionsin2023.pdf
Ke, J., Jahanger, A., Yang, B., Usman, M., & Ren, F. (2022). Digitalization, Financial Development, Trade, and Carbon Emissions; Implication of Pollution Haven Hypothesis During Globalization Mode. Frontiers in Environmental Science, 10, 873880. https://doi.org/10.3389/fenvs.2022.873880
Khan, H., Weili, L., & Khan, I. (2022). The role of institutional quality in FDI inflows and carbon emission reduction: evidence from the global developing and belt road initiative countries. Environmental Science and Pollution Research, 29, 30594–30621. https://doi.org/10.1007/s11356-021-17958-6
Knight, K. W., & Schor, J. B. (2014). Economic Growth and Climate Change: A Cross-National Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries. Sustainability, 6(6), 3722–3731. https://doi.org/10.3390/su6063722
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). McGraw-Hill Irwin.
Lange, S., Pohl, J., & Santarius, T. (2020). Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176, 106760. https://doi.org/10.1016/j.ecolecon.2020.106760
Li, F., & Yan, J. (2024). How do e-government and green technology innovation affect carbon emissions: Evidence from resource-rich countries in the Shanghai Cooperation Organization. Energy Reports, 12, 4026–4033. https://doi.org/10.1016/j.egyr.2024.09.078
Li, K., & Lin, boqiang. (2015). Impacts of Urbanization and Industrialization on Energy Consumption/CO2 Emissions: Does the Level of Development Matter? Renewable and Sustainable Energy Reviews, 52, 1107–1122. https://doi.org/10.1016/j.rser.2015.07.185
Li, Y., Yang, X., Ran, Q., Wu, H., Irfan, M., & Ahmad, M. (2021). Energy structure, digital economy, and carbon emissions: evidence from China. Environmental Science and Pollution Research, 28, 64606–64629. https://doi.org/10.1007/s11356-021-15304-4
Liu, Y., Zhang, F., & Zhang, H. (2024). CEO foreign experience and corporate environmental, social, and governance (ESG) performance. Business Strategy and the Environment, 33(4), 3331–3355.
Ma, R., Zhang, Z. J., & Lin, B. (2023). Evaluating the synergistic effect of digitalization and industrialization on total factor carbon emission performance. Journal of Environmental Management, 348, 119281. https://doi.org/10.1016/j.jenvman.2023.119281
Miller, C. A., Iles, A., & Jones, C. F. (2013). The social dimensions of energy transitions. Science as Culture, 22(2), 135-148. https://doi.org/10.1080/09505431.2013.786989
Müller, D. B., Liu, G., Løvik, A. N., Modaresi, R., Pauliuk, S., Steinhoff, F. S., & Brattebø, H. (2013). Carbon Emissions of Infrastructure Development. Environ. Sci. Technol., 47(20), 11739–11746. https://pubs.acs.org/doi/10.1021/es402618m
Narula, K., & Reddy, B. S. (2015). Three blind men and an elephant: The case of energy indices to measure energy security and energy sustainability. Energy, 80, 148-158. https://doi.org/10.1016/j.energy.2014.11.055
O'Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity: International Journal of Methodology, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6
Poumanyvong, P., & Kaneko , S. (2010). Does Urbanization Lead to Less Energy Use and Lower CO2 Emissions? A Cross-Country Analysis. Ecological Economics, 70, 434–444. https://doi.org/10.1016/j.ecolecon.2010.09.029
Ren, S., Hao, Y., Xu, L., Wu, H., & Ba, N. (2021). Digitalization and energy: How does internet development affect China's energy consumption? Energy Economics, 98, 105220. https://doi.org/10.1016/j.eneco.2021.105220
Sadorsky, P. (2012). Information communication technology and electricity consumption in emerging economies. Energy Policy, 48, 130–136.
Sarwar, S., Streimikiene, D., Waheed, R., & Mighri, Z. (2021). Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions. Sustainable Development, 29(2), 419–440. https://doi.org/10.1002/sd.2156
Shabani, Z. D., & Shahnazi, R. (2019). Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy, 169, 1064–1078. https://doi.org/10.1016/j.energy.2018.11.062
Sharma, S. S. (2011). Determinants of Carbon Dioxide Emissions: Empirical Evidence from 69 Countries. Applied Energy, 88(1), 376–382. https://doi.org/10.1016/j.apenergy.2010.07.022
Singh, H. V., Bocca, R., Gomez, P., Dahlke, S., & Bazilian, M. (2019). The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Reviews, 26, 100382. https://doi.org/10.1016/j.esr.2019.100382
Solarin, S. A., Al-Mulali, U., Musah, I., & Ozturk, I. (2017). Investigating the pollution haven hypothesis in Ghana: An empirical investigation. Energy, 124, 706–719. https://doi.org/10.1016/j.energy.2017.02.089
Solomon , S., Plattner, G., Knutti, R., & Friedlingstein, P. (2009). Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. U.S.A., 106(6), 1704–1709. https://doi.org/10.1073/pnas.0812721106
Soytas, U., Sari, R., & Ewing, B. T. (2007). Energy Consumption, Income, and Carbon Emissions in the United States. Ecological Economics, 62(3–4), 2706–2712. https://doi.org/10.1016/j.ecolecon.2006.07.009
Sui, X., Jiao, S., Wang, Y., & Wang, H. (2024). Digital transformation and manufacturing company competitiveness. Finance Research Letters, 59, 104683. https://doi.org/10.1016/j.frl.2023.104683
Tamazian, A., Chousa, J. P., & Vadlamannati, K. C. (2009). Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy, 37(1), 246–253. https://doi.org/10.1016/j.enpol.2008.08.025
Tang, X., & Li, J. (2022). Study of the mechanism of digitalization boosting urban low-carbon transformation. Frontiers in Environmental Science, 10, 982864. http://doi.org/10.3389/fenvs.2022.982864
United Nations Conference on Trade and Development. (2024). Digital Economy Report 2024. https://unctad.org/publication/digital-economy-report-2024
Viglioni, M. T. D., Calegario, C. L. L., Viglioni, A. C. D., & Bruhn, N. C. P. (2024). Foreign direct investment and environmental degradation: Can intellectual property rights help G20 countries achieve carbon neutrality? Technology in Society, 77, 102501. https://doi.org/10.1016/j.techsoc.2024.102501
Waheed, R., Sarwar, S., & Wei, C. (2019). The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5, 1103-1115.https://doi.org/10.1016/j.egyr.2019.07.006
Wang, J., Dong, K., Sha, Y., & Yan, C. (2022). Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China. Technological Forecasting & Social Change, 184, 121965. https://doi.org/10.1016/j.techfore.2022.121965
Wang, L., He, Y., & Wu, R. (2024). Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies, 17, 767. https://doi.org/10.3390/en17040767
Wang, Q., & Zhang, F. (2020). Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. Journal of Cleaner Production, 252, 119853. https://doi.org/10.1016/j.jclepro.2019.119853
Wang, W., Liu, L., Liao, hua , & Wei, Yi-ming. (2021). Impacts of Urbanization on Carbon Emissions: An Empirical Analysis from OECD Countries. Energy Policy, 151, 112171. https://doi.org/10.1016/j.enpol.2021.112171
Wang, Y., Chen, lili, & Kubota, J. (2016). The Relationship between Urbanization, Energy Use and Carbon Emissions: Evidence from a Panel of Association of Southeast Asian Nations (ASEAN) Countries. Journal of Cleaner Production, 112, 1368–1374. https://doi.org/10.1016/j.jclepro.2015.06.041
Wang, Y., Qiu, Y., & Luo, Y. (2022). CEO foreign experience and corporate sustainable development: Evidence from China. Business Strategy and the Environment, 31(5), 2036–2051.
Weill, P., Subramani, M., & Broadbent, M. (2002). IT infrastructure for strategic agility (CISR WP No. 329). Center for Information Systems Research, Sloan School of Management, Massachusetts Institute of Technology.
World Economic Forum (2018). Fostering Effective Energy Transition 2018 . https://www3.weforum.org/docs/WEF_Fostering_Effective_Energy_Transition_Index_2018.pdf
Wu, H., Wang, B., Lu, M., Irfan, M., Miao, X., Luo, S., & Hao, Y. (2023). The strategy to achieve zero‑carbon in agricultural sector: Does digitalization matter under the background of COP26 targets?. Energy Economics, 126, 106916. https://doi.org/10.1016/j.eneco.2023.106916
Xu, Q., Zhong, M., & Li, X. (2022). How does digitalization affect energy? International evidence. Energy Economics, 107, 105879.' https://doi.org/10.1016/j.eneco.2022.10587
Yang, M., & Kim, J. (2022). A Critical Review of the Definition and Estimation of Carbon Efficiency. Sustainability, 14(16), 10123. https://doi.org/10.3390/su1416101231
Yang, Z., Gao, W., Han, Q., Qi, L., Cui, Y., & Chen, Y. (2022). Digitalization and carbon emissions: how does digital city construction affect China's carbon emission reduction?. Sustainable cities and society, 87, 104201. https://doi.org/10.1016/j.scs.2022.104201
Zhang, C., Fang, J., Ge, S., & Sun, G. (2024). Research on the impact of enterprise digital transformation on carbon emissions in the manufacturing industry. International Review of Economics and Finance, 92, 211–227. https://doi.org/10.1016/j.iref.2024.02.009
Zhang, X., & Cheng, X. (2009). Energy Consumption, Carbon Emissions, and Economic Growth in China. Ecological Economics, 68(10), 2706–2712. https://doi.org/10.1016/j.ecolecon.2009.05.011
Zhao, L., Rao, X., & Lin, Q. (2023). Study of the impact of digitization on the carbon emission intensity of agricultural production in China. Science of the Total Environment, 903, 166544. https://doi.org/10.1016/j.scitotenv.2023.166544
Zheng, R., Wu, G., Cheng, Y., Liu, H., Wang, Y., & Wang, X. (2023). How does digitalization drive carbon emissions? The inverted U-shaped effect in China. Environmental Impact Assessment Review, 102, 107203.
Zhou, X., Zhou, D., Wang, Q., & Su, B. (2019). How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Economics, 81, 380-392. https://doi.org/10.1016/j.eneco.2019.04.014
校內:2030-08-20公開