簡易檢索 / 詳目顯示

研究生: 徐陞達
Hsu, Sheng-Da
論文名稱: 國家數位化程度、能源轉型效率與碳排放之關聯性研究
The Relationship between Digitalization, Energy Transition Efficiency, and Carbon Emissions
指導教授: 廖麗凱
Liao, Li-Kai
學位類別: 碩士
Master
系所名稱: 管理學院 - 會計學系
Department of Accountancy
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 82
中文關鍵詞: 數位化程度世界數位競爭力能源轉型能源轉型指標碳排放
外文關鍵詞: Digitalization, World Digital Competitiveness, Energy transition, Energy transition index, Carbon emissions
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球面臨氣候變遷與數位經濟快速發展的背景下,「經濟數位化」與「環境永續」之間可能存在潛在衝突,譬如:雲端運算、資料中心與資通訊設備所造成的能源與碳排負擔,在全球已是備受矚目的議題。如何兼顧經濟數位化與環境永續,是各國政策制定的關鍵課題之一。本研究旨在探討國家(或經濟體)層級的數位化程度與碳排放之關聯性,並進一步分析能源轉型效率是否具有調節效果。本研究以瑞士洛桑國際管理發展學院所發布之「世界數位競爭力排名」與其三大因素(科技環境、知識基礎和未來就緒性)衡量數位化程度,並採用世界經濟論壇所制定之「能源轉型指標」作為能源轉型效率之代理變數。
    本研究實證資料涵蓋 2017 至 2023 年間共59個國家資料,並採用固定效果模型進行分析,以控制潛在各國家之異質性與時間效應。結果顯示,知識基礎因素水準與碳排放呈顯著負相關,表示在跨國資料中,數位化程度之知識基礎與人力品質為減碳的主要驅動因子;而未來就緒性因素水準則暗示與碳排可能具有正相關性,反映數位應用越好的國家碳排放可能就會越高。此外,能源轉型效率對數位化程度與碳排放之關係具顯著調節作用,能強化數位化程度與未來就緒性因素之減碳效果或削弱其增碳風險。而根據製造業比例進行分組的額外測試結果顯示,高製造業的國家整體數位化程度與未來就緒性因素水準越高碳排放就越高,且更依賴能源轉型效率之調節效果。
    本研究之主要貢獻包括:第一,有別於其他文獻以資通訊科技作為數位化程度之衡量,首度以世界數位競爭力全面檢視國家整體數位化程度與其三因素面對碳排放之異質性影響;第二,納入能源轉型效率作為調節因子,揭示數位化與碳排放關係之條件依賴性;第三,進一步針對不同製造業發展程度國家進行分組比較,提供更具針對性的結果啟示。研究結果將有助於理解數位轉型與低碳發展之整合潛力,並為全球邁向低碳經轉型提供實證基礎。

    This study examines the relationship between national digitalization and carbon emissions, and the moderating role of energy transition efficiency. Digitalization is measured by the IMD World Digital Competitiveness Ranking and its three dimensions, while the World Economic Forum’s Energy Transition Index proxies energy transition efficiency. Using panel data for 59 countries (2017–2023) and fixed-effects models, results show that the Knowledge dimension reduces emissions, whereas Future Readiness may increase them. Energy transition efficiency significantly moderates these effects. In high-manufacturing economies, higher digitalization and Future Readiness are linked to greater emissions, with stronger reliance on energy transition efficiency. The findings highlight the heterogeneous carbon impacts of digitalization and the conditional role of energy transition in fostering low-carbon growth.

    第壹章 緒論 1 第貳章 文獻回顧及假說發展 4 第一節 碳排放相關文獻 4 第二節 能源轉型指標 5 第三節 國家數位化程度對於碳排放之相關文獻回顧 7 第四節 世界數位競爭力 10 第五節 數位化程度對於碳排放之假說建立 14 第六節 能源轉型效率調節效果之假說建立 17 第參章 研究設計 19 第一節 樣本選取與資料來源 19 第二節 變數衡量 19 第三節 實證模型 20 第肆章 實證結果 25 第一節 敘述性統計 25 第二節 相關係數矩陣 29 第三節 主測試實證結果 31 第伍章 穩健性測試 35 第一節 將自變數從水準直改以年度變動值進行替代估計 36 第二節 使用碳強度作為應變數進行替代估計 39 第陸章 額外測試 42 第一節 高製造業國家之數位化、能源轉型與碳排放關係 44 第二節 非高製造業國家之數位化、能源轉型與碳排放關係 51 第柒章 結論 59 第一節 研究結論 60 第二節 研究貢獻 61 第三節 研究限制 61 第四節 研究建議 62 參考文獻 63 附錄一:主測試國家選取表 70 附錄二:額外測試國家分組情況 71 附錄三:變數表 72

    Acheampong, A. O. (2019). Modelling for insight: Does financial development improve environmental quality? Energy Economics, 83, 156–179. https://doi.org/10.1016/j.eneco.2019.06.025
    Añón Higón, D., Gholami, R., & Shirazi, F. (2017). ICT and environmental sustainability: A global perspective. Telematics and Informatics, 34(1), 85–95. http://dx.doi.org/10.1016/j.tele.2017.01.001
    Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037//0022-3514.51.6.1173
    Bian, H., & Meng, M. (2023). Carbon emission reduction potential and reduction strategy of China’s manufacturing industry. Journal of Cleaner Production, 423, 138718. https://doi.org/10.1016/j.jclepro.2023.138718
    Bianchini, S., Damioli, G., & Ghisetti, C. (2022). The environmental effects of the “twin” green and digital transition in European regions. Environmental and Resource Economics, 84, 877–918. https://doi.org/10.1007/s10640-022-00741-7
    Chen, S., Jin, H., & Lu, Y. (2019). Impact of Urbanization on CO2 Emissions and Energy Consumption Structure: A Panel Data Analysis for Chinese Prefecture-Level Cities. Structural Change and Economic Dynamics, 49, 107–119. https://doi.org/10.1016/j.strueco.2018.08.009
    Cole, M. A., & Neumayer, E. (2004). Examining the impact of demographic factors on air pollution. Population and Environment, 26(1), 5-21.
    Dietz, T., & Rosa, E. A. (1994). Rethinking the environmental impacts of population, affluence and technology. Human ecology review, 1(2), 277-300. https://www.jstor.org/stable/24706840
    Dietz, T., & Rosa, E. A. (1997). Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1), 175-179. https://doi.org/10.1073/pnas.94.1.175
    Dinda, S., & Coondoo, D. (2006). Income and Emission: A Panel Data-Based Cointegration Analysis Author Links Open Overlay Panel. Ecological Economics, 57(2), 167–181. https://doi.org/10.1016/j.ecolecon.2005.03.028
    Faisal, F., Azizullah, Tursoy, T., & Pervaiz, R. (2020). Does ICT lessen CO2 emissions for fast-emerging economies? An application of the heterogeneous panel estimations. Environmental Science and Pollution Research, 27, 10778–10789. https://doi.org/10.1007/s11356-019-07582-w
    Fouquet, R., & Hippe, R. (2022). Twin transitions of decarbonisation and digitalisation: A historical perspective on energy and information in European economies. Energy Research & Social Science, 91, 102736. https://doi.org/10.1016/j.erss.2022.102736
    Ganda, F. (2019). The impact of innovation and technology investments on carbon emissions in selected organisation for economic Co-operation and development countries. Journal of Cleaner Production, 217, 469–483. https://doi.org/10.1016/j.jclepro.2019.01.235
    Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, DJ., et al. (2013) Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12): e81648. https://doi.org/10.1371/journal.pone.0081648
    Hao, Y., Chen, H., Wei, Y. M., & Li, Y. M. (2016). The influence of climate change on CO2 (carbon dioxide) emissions: an empirical estimation based on Chinese provincial panel data. Journal of cleaner production, 131, 667-677. https://doi.org/10.1016/j.jclepro.2016.04.117
    Haseeb, A., Xia, E., Saud, S., Ahmad, A., & Khurshid, H. (2019). Does information and communication technologies improve environmental quality in the era of globalization? An empirical analysis. Environmental Science and Pollution Research, 26(9), 8594–8608. https://doi.org/10.1007/s11356-019-04296-x
    Huang, Y., & Zhang, Y. (2023). Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions. Ecological Economics, 205, 107674. https://doi.org/10.1016/j.ecolecon.2022.107674
    Huisingh, D., Zhang, Zhihua, Moore, John C., Qiao, Q., & Li, qi . (2015). Recent Advances in Carbon Emissions Reduction: Policies, Technologies, Monitoring, Assessment and Modeling. Journal of Cleaner Production, 103, 1–12. https://doi.org/10.1016/j.jclepro.2015.04.098
    IMD World Competitiveness Center. (2017). IMD World Digital Competitiveness Ranking 2017 . https://investcroatia.gov.hr/wp-content/uploads/2018/01/world_digital_competitiveness_yearbook_2017.pdf
    Intergovernmental Panel on Climate Change. (2018). Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development,and efforts to eradicate poverty. https://www.ipcc.ch/sr15/
    International Energy Agency. (2017). Digitalisation and Energy. https://www.iea.org/reports/digitalisation-and-energy
    International Energy Agency. (2024). CO2 Emissions in 2023. https://iea.blob.core.windows.net/assets/33e2badc-b839-4c18-84ce-f6387b3c008f/CO2Emissionsin2023.pdf
    Ke, J., Jahanger, A., Yang, B., Usman, M., & Ren, F. (2022). Digitalization, Financial Development, Trade, and Carbon Emissions; Implication of Pollution Haven Hypothesis During Globalization Mode. Frontiers in Environmental Science, 10, 873880. https://doi.org/10.3389/fenvs.2022.873880
    Khan, H., Weili, L., & Khan, I. (2022). The role of institutional quality in FDI inflows and carbon emission reduction: evidence from the global developing and belt road initiative countries. Environmental Science and Pollution Research, 29, 30594–30621. https://doi.org/10.1007/s11356-021-17958-6
    Knight, K. W., & Schor, J. B. (2014). Economic Growth and Climate Change: A Cross-National Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries. Sustainability, 6(6), 3722–3731. https://doi.org/10.3390/su6063722
    Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). McGraw-Hill Irwin.
    Lange, S., Pohl, J., & Santarius, T. (2020). Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176, 106760. https://doi.org/10.1016/j.ecolecon.2020.106760
    Li, F., & Yan, J. (2024). How do e-government and green technology innovation affect carbon emissions: Evidence from resource-rich countries in the Shanghai Cooperation Organization. Energy Reports, 12, 4026–4033. https://doi.org/10.1016/j.egyr.2024.09.078
    Li, K., & Lin, boqiang. (2015). Impacts of Urbanization and Industrialization on Energy Consumption/CO2 Emissions: Does the Level of Development Matter? Renewable and Sustainable Energy Reviews, 52, 1107–1122. https://doi.org/10.1016/j.rser.2015.07.185
    Li, Y., Yang, X., Ran, Q., Wu, H., Irfan, M., & Ahmad, M. (2021). Energy structure, digital economy, and carbon emissions: evidence from China. Environmental Science and Pollution Research, 28, 64606–64629. https://doi.org/10.1007/s11356-021-15304-4
    Liu, Y., Zhang, F., & Zhang, H. (2024). CEO foreign experience and corporate environmental, social, and governance (ESG) performance. Business Strategy and the Environment, 33(4), 3331–3355.
    Ma, R., Zhang, Z. J., & Lin, B. (2023). Evaluating the synergistic effect of digitalization and industrialization on total factor carbon emission performance. Journal of Environmental Management, 348, 119281. https://doi.org/10.1016/j.jenvman.2023.119281
    Miller, C. A., Iles, A., & Jones, C. F. (2013). The social dimensions of energy transitions. Science as Culture, 22(2), 135-148. https://doi.org/10.1080/09505431.2013.786989
    Müller, D. B., Liu, G., Løvik, A. N., Modaresi, R., Pauliuk, S., Steinhoff, F. S., & Brattebø, H. (2013). Carbon Emissions of Infrastructure Development. Environ. Sci. Technol., 47(20), 11739–11746. https://pubs.acs.org/doi/10.1021/es402618m
    Narula, K., & Reddy, B. S. (2015). Three blind men and an elephant: The case of energy indices to measure energy security and energy sustainability. Energy, 80, 148-158. https://doi.org/10.1016/j.energy.2014.11.055
    O'Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity: International Journal of Methodology, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6
    Poumanyvong, P., & Kaneko , S. (2010). Does Urbanization Lead to Less Energy Use and Lower CO2 Emissions? A Cross-Country Analysis. Ecological Economics, 70, 434–444. https://doi.org/10.1016/j.ecolecon.2010.09.029
    Ren, S., Hao, Y., Xu, L., Wu, H., & Ba, N. (2021). Digitalization and energy: How does internet development affect China's energy consumption? Energy Economics, 98, 105220. https://doi.org/10.1016/j.eneco.2021.105220
    Sadorsky, P. (2012). Information communication technology and electricity consumption in emerging economies. Energy Policy, 48, 130–136.
    Sarwar, S., Streimikiene, D., Waheed, R., & Mighri, Z. (2021). Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions. Sustainable Development, 29(2), 419–440. https://doi.org/10.1002/sd.2156
    Shabani, Z. D., & Shahnazi, R. (2019). Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis. Energy, 169, 1064–1078. https://doi.org/10.1016/j.energy.2018.11.062
    Sharma, S. S. (2011). Determinants of Carbon Dioxide Emissions: Empirical Evidence from 69 Countries. Applied Energy, 88(1), 376–382. https://doi.org/10.1016/j.apenergy.2010.07.022
    Singh, H. V., Bocca, R., Gomez, P., Dahlke, S., & Bazilian, M. (2019). The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Reviews, 26, 100382. https://doi.org/10.1016/j.esr.2019.100382
    Solarin, S. A., Al-Mulali, U., Musah, I., & Ozturk, I. (2017). Investigating the pollution haven hypothesis in Ghana: An empirical investigation. Energy, 124, 706–719. https://doi.org/10.1016/j.energy.2017.02.089
    Solomon , S., Plattner, G., Knutti, R., & Friedlingstein, P. (2009). Irreversible Climate Change Due to Carbon Dioxide Emissions. Proc. Natl. Acad. Sci. U.S.A., 106(6), 1704–1709. https://doi.org/10.1073/pnas.0812721106
    Soytas, U., Sari, R., & Ewing, B. T. (2007). Energy Consumption, Income, and Carbon Emissions in the United States. Ecological Economics, 62(3–4), 2706–2712. https://doi.org/10.1016/j.ecolecon.2006.07.009
    Sui, X., Jiao, S., Wang, Y., & Wang, H. (2024). Digital transformation and manufacturing company competitiveness. Finance Research Letters, 59, 104683. https://doi.org/10.1016/j.frl.2023.104683
    Tamazian, A., Chousa, J. P., & Vadlamannati, K. C. (2009). Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy, 37(1), 246–253. https://doi.org/10.1016/j.enpol.2008.08.025
    Tang, X., & Li, J. (2022). Study of the mechanism of digitalization boosting urban low-carbon transformation. Frontiers in Environmental Science, 10, 982864. http://doi.org/10.3389/fenvs.2022.982864
    United Nations Conference on Trade and Development. (2024). Digital Economy Report 2024. https://unctad.org/publication/digital-economy-report-2024
    Viglioni, M. T. D., Calegario, C. L. L., Viglioni, A. C. D., & Bruhn, N. C. P. (2024). Foreign direct investment and environmental degradation: Can intellectual property rights help G20 countries achieve carbon neutrality? Technology in Society, 77, 102501. https://doi.org/10.1016/j.techsoc.2024.102501
    Waheed, R., Sarwar, S., & Wei, C. (2019). The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5, 1103-1115.https://doi.org/10.1016/j.egyr.2019.07.006
    Wang, J., Dong, K., Sha, Y., & Yan, C. (2022). Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China. Technological Forecasting & Social Change, 184, 121965. https://doi.org/10.1016/j.techfore.2022.121965
    Wang, L., He, Y., & Wu, R. (2024). Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability. Energies, 17, 767. https://doi.org/10.3390/en17040767
    Wang, Q., & Zhang, F. (2020). Does increasing investment in research and development promote economic growth decoupling from carbon emission growth? An empirical analysis of BRICS countries. Journal of Cleaner Production, 252, 119853. https://doi.org/10.1016/j.jclepro.2019.119853
    Wang, W., Liu, L., Liao, hua , & Wei, Yi-ming. (2021). Impacts of Urbanization on Carbon Emissions: An Empirical Analysis from OECD Countries. Energy Policy, 151, 112171. https://doi.org/10.1016/j.enpol.2021.112171
    Wang, Y., Chen, lili, & Kubota, J. (2016). The Relationship between Urbanization, Energy Use and Carbon Emissions: Evidence from a Panel of Association of Southeast Asian Nations (ASEAN) Countries. Journal of Cleaner Production, 112, 1368–1374. https://doi.org/10.1016/j.jclepro.2015.06.041
    Wang, Y., Qiu, Y., & Luo, Y. (2022). CEO foreign experience and corporate sustainable development: Evidence from China. Business Strategy and the Environment, 31(5), 2036–2051.
    Weill, P., Subramani, M., & Broadbent, M. (2002). IT infrastructure for strategic agility (CISR WP No. 329). Center for Information Systems Research, Sloan School of Management, Massachusetts Institute of Technology.
    World Economic Forum (2018). Fostering Effective Energy Transition 2018 . https://www3.weforum.org/docs/WEF_Fostering_Effective_Energy_Transition_Index_2018.pdf
    Wu, H., Wang, B., Lu, M., Irfan, M., Miao, X., Luo, S., & Hao, Y. (2023). The strategy to achieve zero‑carbon in agricultural sector: Does digitalization matter under the background of COP26 targets?. Energy Economics, 126, 106916. https://doi.org/10.1016/j.eneco.2023.106916
    Xu, Q., Zhong, M., & Li, X. (2022). How does digitalization affect energy? International evidence. Energy Economics, 107, 105879.' https://doi.org/10.1016/j.eneco.2022.10587
    Yang, M., & Kim, J. (2022). A Critical Review of the Definition and Estimation of Carbon Efficiency. Sustainability, 14(16), 10123. https://doi.org/10.3390/su1416101231
    Yang, Z., Gao, W., Han, Q., Qi, L., Cui, Y., & Chen, Y. (2022). Digitalization and carbon emissions: how does digital city construction affect China's carbon emission reduction?. Sustainable cities and society, 87, 104201. https://doi.org/10.1016/j.scs.2022.104201
    Zhang, C., Fang, J., Ge, S., & Sun, G. (2024). Research on the impact of enterprise digital transformation on carbon emissions in the manufacturing industry. International Review of Economics and Finance, 92, 211–227. https://doi.org/10.1016/j.iref.2024.02.009
    Zhang, X., & Cheng, X. (2009). Energy Consumption, Carbon Emissions, and Economic Growth in China. Ecological Economics, 68(10), 2706–2712. https://doi.org/10.1016/j.ecolecon.2009.05.011
    Zhao, L., Rao, X., & Lin, Q. (2023). Study of the impact of digitization on the carbon emission intensity of agricultural production in China. Science of the Total Environment, 903, 166544. https://doi.org/10.1016/j.scitotenv.2023.166544
    Zheng, R., Wu, G., Cheng, Y., Liu, H., Wang, Y., & Wang, X. (2023). How does digitalization drive carbon emissions? The inverted U-shaped effect in China. Environmental Impact Assessment Review, 102, 107203.
    Zhou, X., Zhou, D., Wang, Q., & Su, B. (2019). How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Economics, 81, 380-392. https://doi.org/10.1016/j.eneco.2019.04.014

    無法下載圖示 校內:2030-08-20公開
    校外:2030-08-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE