| 研究生: |
歐陽誠 Ou-yang, Cheng |
|---|---|
| 論文名稱: |
可動與固定火載量於房間火災歷程之作用關係 Interactions between Movable and Fixed Fire Loads in Room Fires |
| 指導教授: |
林大惠
Lin, Ta-hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 固定火載量 、全尺寸火災 、FDS模擬 、可動火載量 |
| 外文關鍵詞: | Full-scale fire, FDS, Fixed fire load, Movable fire load |
| 相關次數: | 點閱:128 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以6m×5m×2.4m之全尺寸實驗屋,固定火載量為壁裝板材及高低櫃,可動火載量為木框架進行房間火災實驗。實驗屋於天花板設置撒水頭及偵煙式探測器。實驗中改變自然通風開口之面積,與可動火載量位置及重量,以觀測通風與火載量對火災成長及撒水頭與偵煙式探測器作動時間的影響。同時使用FDS進行模擬,並針對FDS參數設定加以探討。
研究中發現,就本實驗配置而言,當開口面積增加則易使火災初期火勢成長迅速,亦造成撒水頭及偵煙式探測器作動時間縮短。而將可動火載量配置於房間角落,使得火勢迅速由可動火載量延燒至固定火載量,使初期火勢增強較為迅速。而撒水頭及偵煙式探測器位於可動火載量正下方及受到壁面效應的影響,均會作動時間縮短。可動火載量不足或距離固定火載量過遠,則無法引燃固定火載量壁裝板材與高低櫃。而可動火載量採垂直堆疊容易產生大量煙氣使偵煙式探測器提早作動,但可能會使撒水頭作動趨緩。
FDS模擬部分藉由改變可動火載量組成及輻射熱釋放比例藉以符合實驗,而結果發現FDS在由可動火載量引燃至固定火載量部份與實驗結果較不符合,有賴於後續的研究。
In this investigation, full-sized fire tests were conducted in a 6m×5m×2.4m room with brick walls. The fixed fire load consisted of hanging cabinets, low cabinets, and wood boards on four walls while the movable fire load was modeled by a wood crib. Sprinklers and smoke detectors were installed and the activation time of each was recorded. The objective of this investigation was the effects of the ventilation and change of the location and weight of the movable fire load on the fire development. At the same time, the room fire tests were modeled using the Fire Dynamics Simulator (FDS). The effects of the parameters of FDS were discussed.
For this setup of experiment, the experimental results showed that the fire growth rate increased and the activation time of the sprinklers and the smoke detectors shortened with the increase of the ventilation opening area. When the distance from the movable fire load to the fixed fire load was too long or when the weight of the movable fire load was too small, the fixed fire load could not be ignited and the fire did not grow. A movable fire load at the corner created a stronger fire than a movable fire load in the middle of the room. The shortest activation time of the sprinklers could be observed when the fire source was at the corner of the room. The smoke accumulating rate increased and the activation time of the smoke detectors shortened as the movable fire load were piled vertically, but the activation time of the sprinkle was delayed.
In the FDS simulation, the composition and the radiation heat release of the movable fire load were modified to match experimental trend. However, the ignition of the fixed fire load differed quite a lot from the experimental observation. More parametric study is needed in the future.
1. 中華民國內政部消防署,http://www.nfa.gov.tw/。
2. Gross D, Robertson A. F., “Experimental fires in enclosures,” 10th
Symposium International on Combustion, Cambridge, Angleterre. p.
3. Kawagoe K. “Fire behavior in rooms,” Building Research Institute,
Report No. 27, Ministry of Construction, Tokyo, Japan, 1958.
4. Bart M. and Paul V., “Experimental study of natural roof ventilation in
full-scale enclosure fire tests in a small compartment,” Fire Safety
Journal, Vol. 42, p. 523, 2007.
5. “建築物室內裝修火載量評估技術研究”,內政部建築研究所,
092-301070000-G2017,2003。
6. “性能設計與設計火源檢證研究-火載量與閃燃時間評估在性能法規
上之應用研究”,內政部建築研究所,094-301070000-G1009,2005。
7. Chow, W. K., “Assessment on heat release of furniture foam
arrangement by a cone calorimeter,” Journal of Fire Safety Science,
Vol. 20, p. 319, 2002.
8. 紀博欽,“機車與沙發的實尺寸火災分析”,國立成功大學機械工程
學系碩士論文,民國九十四年。
9. Babrauskas, V., “Burning rates,” The SFPE Handbook of Fire
Protection Engineering, National Fire Protection Association, Chapter
10. Peacock, R. D., Reneke, P. A., Bulowaski, R. W. and Babrauskas, V.,
“Defining flashover for fire hazard calculations,” Fire Safety Journal,
Vol. 32, p. 331, 1999.
11. McCaffrey, B. J., Quintiere, J. G. and Harkleroad, M. F., “Estimating
room temperature and likelihood of flashover using fire test data
correlation,” Fire Technology, Vol. 17, p. 98, 1981.
12. Mowrer, F. and Williamson, B., “Estimating room temperatures from
fires along walls and in corners,” Fire Technology, Vol. 23, p. 133,
1987.
13. Yu, H. Z., Lee, J. L. and Kung, H.C., “Suppression of rack-storage fires
by water,” In Fire Safety Science—Proceedings of the Fourth
International Symposium, Ontario, Canada; p. 901, 1994.
14. Kim, M. B., Jang, Y. J. and Kim, J. K., “Burning rate of a pool fire with
downward-directed sprays,” Fire Safety Journal, p.37, 1996.
15. Ma, T. G. and Quintiere, J. G., “Numerical simulation of axi-
symmetric fire plumes: accuracy and limitations,” Fire Safety Journal,
Vol. 38, p. 467, 2003.
16. McGrattan, K. B., Baum, H. R. and Rehm, R. G., “Large eddy
simulations of smoke movement”, Fire Safety Journal, Vol. 30(2),
1998, p. 161.
17. Kwon, J., “Evaluation of FDS V.4: Upward Flame Spread,” M. S.
Thesis, Worcester Polytechnic Institute, 2006.
18. Cheung, A. L. K., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H. and
Cheung, S. C. P., “Capturing the pulsation frequency of a buoyant pool
fire using the large eddy simulation approach,” Numerical Heat
Transfer, Part A: Applications, Vol. 53, p. 561, 2008.
19. Wen, J. X., Kang, K., Donchev, T. and Karwatzki, J. M., “Validation of
FDS for the prediction of medium-scale pool fires,” Fire Safety Journal,
Vol. 42, p. 127, 2007.
20. Chow, W. K. and Zou, G. W., “Correlation equations on fire-induced
air flow rates through doorway derived by large eddy simulation,”
Building and Environment, Vol. 40, p. 897, 2005.
21. Musser. A. and McGrattan, K., “Evaluation of a fast large-eddy-
simulation model for indoor airflows,” Journal of Architectural
Engineering, Vol. 8, p. 10, 2002.
22 Lin, C. S., Wang, S. C., Hung, C. B. and Hsu, J. H., “Ventilation effect
on fire smoke transport in a townhouse building,” Heat
Transfer—Asian Research, Vol. 35(6), p. 387 2006.
23. Kerber, S. and Milke, J. A., “Using FDS to simulate smoke layer
interface height in a simple atrium,” Fire Technology, Vol. 43, p. 45,
2007.
24. Yi, L., Chow, W. K., Li, Y. Z. and Huo, R., “A simple two-layer zone
model on mechanical exhaust in an atrium,” Building and Environment,
Vol. 40, p. 869, 2005.
25. Kim, S. C. and Ryou, H. S., “An experimental and numerical study on
fire suppression using a water mist in an enclosure,” Building and
Environment, Vol. 38, p. 1309, 2003.
26. Zou, G. W. and Chow, W. K., “Evaluation of the field model, fire
dynamics simulation, for a specific experimental scenario,” Journal of
Fire Protection Engineering, Vol. 15, p. 77, 2005.
27. Barnett, C.R., “BFD curve: a new empirical model for fire compartment
temperatures,” Fire Safety Journal, Vol. 37, p. 437, 2002.
28. Pope, N. D. and Bailey, C. G., “Quantitative comparison of FDS and
parametric fire curves with post-flashover compartment fire test data,”
Fire Safety Journal, Vol. 41, p. 99, 2006.
29. Hu, L. H., Fong, N. K., Yang, L. Z., Chow, W. K., Li, Y. Z. and Huo,
R., “Modeling fire-induced smoke spread and carbon monoxide
transportation in a long channel sire dynamics simulator comparisons
with measured data,” Journal of Hazardous Materials, Vol. 140, p. 293,
2007.
30. 「防火性能設計之火源燃燒特性研究」,內政部建築研究所專題研
究計畫,094-30107000-G1009,期末報告,民國94年12月。
31. 「性能式防火設計基準全尺寸驗證研究」,內政部建築研究所專題
研究計畫,095-30107000-G1011,期末報告,民國95年12月。
32 「各類場所消防安全設備設置標準」,民國78年7月。
33. 蕭宜峯,“利用油盤火焰驗證10MW大尺度燃燒分析裝置”,國立成
功大學機械工程學系碩士論文,民國九十三年。
34. Parker, W., “Calculation of the heat release rate by oxygen consumption
for various applications,” NBS IR 81-2427, 1982.
35. Janssens, M., “Measuring rate of heat release by oxygen consumption,”
Fire Technology, Vol. 27, p. 234, 1991.
36. Forney, G. P. and McGrattan, K. B., “User’s guide for smokeview
version 4 – A tool for visualizing fire dynamics simulation data,”
National Institute of Standards and Technology, 2006.
37. Huggett, C., “Estimation of the rate of heat release by means of oxygen
consumption measurements,” Fire Materials, Vol. 4, p. 61, 1980.
38. Atreya. A., “Pyrolysis, ignition and fire spread on horizontal surfaces of
wood,” NBS-GCR-83-449, National Bureau of Standards (now NIST),
Gaithersburg, Maryland, 1983.
39. Ritchie, S. J., Steckler, K. D., Hamins, A., Cleary, T. G., Yang, J. C.
and Kashiwagi, T., “The effect of sample size on the heat release rate of
charring materials,” In Fire Safety Science - Proceedings of the 5th
International Symposium, International Association For Fire Safety
Science, p. 177, 1997.
40. Heskestad, G. and Dilichatsios, M. A., “The initial convective flow in
fire,” 17th Symposium on Combustion, The Combustion Institute,
Pittsburgh, Pennsylvania, p. 1113, 1978.
41 密閉式撒水頭認可基準,民國九十六年
42. 張岱軒,“撒水頭作動時間的實尺寸房間分析”,國立成功大學機械
工程學系碩士論文,民國90年3月。
43. McGrattan, K. B., “Fire modeling: Where are we? Where are we
going,” Fire Safety Science–Proceedings of The Eighth International
Symposium, p. 53