研究生: |
張凱雯 Chang, Kai-wen |
---|---|
論文名稱: |
研究以明膠有機模板所製成之中孔洞氧化矽、碳材、與介尺度複合材料的製程與應用 A Study on the Synthesis and Application of Gelatin-templated Mesoporous Silicas, Carbons, and Hybrid Materials |
指導教授: |
林弘萍
Lin, Hong-ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 162 |
中文關鍵詞: | 複合材料 、明膠 、中孔洞氧化矽 、中孔洞碳材 |
外文關鍵詞: | Gelatin, Mesoporous Carbon, Direct Methanol Fuel Cell, Bioglass |
相關次數: | 點閱:161 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包括三個研究主題,第一個主題是以自然界高分子明膠為有機模板合成中孔洞氧化矽及中孔洞複合材料,並探討其相關應用。第二個主題是以明膠與酚醛樹脂為有機模板合成中孔洞碳材及中孔洞碳材的應用。第三個主題是以陰陽離子型界面活性劑合成不同型態之中孔洞氧化矽。
第一部份:以明膠為模板合成中孔洞氧化矽及中孔洞氧化矽材料的應用
本研究為落實綠色化學概念,所以找尋低毒性且對環境汙染程度低的有機模板取代物-明膠。利用明膠具有胺機等可擁有氫鍵結合的官能基,在適當條件下加入矽酸鈉合成有機無機混成材料,最後移除有機物,即可得到中孔洞氧化矽材料。因中孔洞氧化矽材料具有高表面積、熱穩定性高及孔洞大小可調整等優點,可應用在催化反應及固態模板等方面。本實驗亦嘗試將市售奈米級的二氧化鈦包覆到中孔洞氧化矽中,因中孔洞氧化矽具有高通透性,所以對二氧化鈦的活性及功能影響不大,且能避免奈米粒子與生物體直接接觸及難回收等問題。氧化矽材料也具有生物相容性的優點,所以嘗試以氧化矽為固態模板,合成氧化鈣與氧化矽的複合材料,此複合材料可應用在治療牙本質過敏症。
第二部份:以明膠與酚醛樹脂為有機模板合成中孔洞碳材及其應用
本研究以簡單的高分子混摻法合成中孔洞碳材,利用明膠與酚醛樹脂為有機模板,在適當條件下加入矽酸鈉合成有機無機混成材料,經由碳化、移除氧化矽,即可得到中孔洞碳材。中孔洞碳材具有高表面積與大的孔洞體積等優點,可應用在吸附劑、固態模板、催化擔體及電極材料等。本實驗利用中孔洞碳材為固態模板,含浸各種金屬鹽類,因為中孔洞碳材的存在,金屬前驅物被限制在孔到之間,經由高溫鍛燒,移除碳材並提昇金屬氧化物之結晶度,最後生成高結晶度、高表面積的中孔洞金屬氧化物材料。另一個部份,使用中孔洞碳材做為電極材料,擔載白金觸媒,做為直接甲醇燃料電池的電極,在陰極活性測試方面,因為中孔洞碳材具有高表面積,所以可以提昇觸媒的含量,使電流值增加,活性上升。
第三部份:以陰陽離子型界面活性劑合成不同型態之中孔洞氧化矽
本實驗利用界面活性劑做為有機模板,再與無機物(四乙氧基矽烷)結合。根據界面活性劑化學,不同電荷之陰陽離子型界面活性劑系統,即使在非常稀薄的條件下仍可組成各種不同的微胞結構,包含有棍狀微胞、囊泡、及層狀結構。這些有機物的結合除了可用於模擬細胞膜性質外,更能作為具有特殊型態的介尺度結構氧化矽材料的模板。本實驗採用陽離子型界面活性劑( C18TMAC )及陰離子型界面活性劑( SDS )以適當比例混合(SDS/ C18TMAC莫耳比,S ),經靜電作用力而形成微胞做為有機模板後,再結合四乙氧基矽烷,於pH值0.5 – 8.0,溫度40 ℃下進行反應,製備不同型態和介尺度之中孔洞氧化矽材料,以做為後續開發孔洞材料之基礎。
In this thesis, there are three major researching parts: 1. Synthesis of mesoporous silicas using gelatin as template, and synthesis and application of mesoporous hybrid materials. 2. Synthesis and application of mesoporous carbons using gelatin-phenol formaldehyde polymer blend as template. 3. Synthesis of mesoporous silicas in various morphologies by using cationic–anionic binary surfactant as template.
Part I:Synthesis of mesoporous silicas using gelatin as template, and application of mesoporous hybrid materials.
Based on the concepts of green chemistry, we used nature-friendly gelatin as to synthesize the mesoporous materials. Since the gelatin possesses numerous amide groups (-CO-NH2), which can have a high affinity to strongly interact with silanol groups (Si-OH) on the silicate species via multiple hydrogen bonds, thus, a homogeneous gelatin-silica composite was gained by adding sodium silicate solution as silica source. Filtration, drying and calcination gave the mesoporous silicas. Mesoporous silicas with high surface area, tunable pore size and large pore volume demonstrate potential applications in catalytic support and solid template. Because the gelatin can act as dispersion agent of nanoparticles, TiO2 nanoparticles@mesoporous silica was conveniently obtained from a simple silicification. Because of high accessibility of TiO2 nanoparticles within mesoporous silica, the photo-catalytic activity of the TiO2 nanoparticles@mesoporous silica is as well as that of TiO2 nanoparticles. Distinctly, the hybrid TiO2 nanoparticles@mesoporous silica can avoid direct contact to the TiO2 nanoparticles and be easily recovered by filtration. Owing to the biocompatibility of silica, the CaO@mesoporous silicas can be obtained from a simple impregnation CaCO3 into the mesoporous silica and calcination. The CaO@mesoporous silica was used for the treatment of dentin hypersensitivity.
Part II:Synthesis and application of mesoporous carbon using gelatin-phenol formaldehyde polymer blend as template.
To prepare the mesoporous carbon, the gelatin-phenol formaldehyde polymer blend was used as template. After combing with the sodium silicate solution at proper pH value, a homogeneous gelatin-phenol formaldehyde-silica composite was gained. The mesoporous carbon was obtained form a high-temperature carbonization and silica removal of the gelatin-phenol formaldehyde-silica composite. Mesoporous carbon with high surface area and large pore volume demonstrate potential applications in absorbent, hard template, catalytic support and raw materials of electric electrodes. Two synthetic processes, including impregnation and ion absorption of the metal salts, have been used to introduce metal oxides precursor into the solid-template mesoporous carbons. During high-temperature calcination, the metal oxides granular particles was formed and confined within the mesopores of the carbon templates. Therefore, the mesoporous metal oxide replicas with high surface area, large pore volume and high crystalline have been efficiently prepared. In electrochemical applications, we used the mesoporous carbons as electric material. With loading Pt nanoparticles into mesoporous carbon, the Pt nanoparticles@mesoporous carbon can be used as the cathode in the direct methanol fuel cell (DMFC). Based on the electrochemical activity tests, the Pt nanoparticles@mesoporous carbon shows a high current density, because the high surface area of mesoporous carbon, we could increase the loading content of the Pt nanoparticles.
Part III:Synthesis of mesoporous silicas in various morphology by using cationic–anionic surfactants as template
In order to synthesize organic-inorganic composites in complex and novel structures, we selected the cationic-anionic binary surfactant as a stable organic template and the organic tetraethyl orthosilicate(TEOS) as silica source. According to surfactant chemistry, even under very dilute condition, the cationic–anionic surfactants can self-assemble into various micelle structures, including rod micelle, vesicles micelle, and laminar structure. With a careful control on the SDS/CnTMAB molar ratios, mesoporous silicas in various morphologies (e.g. helical fibers, uniform spheres, fibers, gyroids, tubes,…etc.) were synthesized at 40℃, pH = 0.5-8.0.
1.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
2.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3.IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
4.J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem. 2003, 115 , 3254.
5.A. Vinu, V. Murugesan, M. Hartmann. Chem. Mater. 2003, 15, 1385.
6.H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
7.V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
8. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
9. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki, S. – Eon.Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
10.A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
11.Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou
Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
12.A. Walcarius, M. Etienne, B. Lebeau. Chem. Mater. 2003, 15, 2161.
13.T. Yokoi, H. Yoshitake, T. Tatsumi. J. Mater. Chem. 2004, 14 , 951.
14.J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature., 2000, 48, 289.
15.E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
16.Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
17.F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
18.Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
19.Jiang, P.; Bertone, J. F.; Colvin, V. L. Science. 2001, 291, 453.
20.Fowler, C. E.; Khushalani, D.; Mann, S. Chem. Commun. 2001, 2028.
21.Huo, Q. S.; Feng, J. L.; Schu¨th, F.; Stucky, G. D. Chem. Mater. 1997, 9, 14.
22.Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker,T.; Brinker, C. J. Nature. 1999, 398, 223.
23. Fowler, C. E.;Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649.
24.C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
25.H. C. Foley, J. Microporous Mater. 1995, 4, 407.
26.J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun.1998, 2177.
27. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N.Toyota,
Synthetic Metals, 2003, 721.
28.H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater.,2003, 15, 2107
29.T. Kyotani, Carbon 2000, 38, 269.
30.H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem.Mater.,1996, 8, 454.
31.W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
32.Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62
33.S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
34.C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146,3639.
35.D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita, Chem. Mater.,
2000, 12, 3397.
36.R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,No. 9, 677.
37.S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
38.R. Ryoo, S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu and O. Terasaki,
manuscript in preparation.
39.M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003, 15, 2815
40.S. Mann, Angew. Chem. Int. Ed. 2000, 39, 3392.
41.N. Kröger, R. Deutzmann, M. Sumper, Science 1999, 286, 1129.
42.E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes, Angew. Chem. Int. Ed. 2002, 41, 1543
43.T. F. Todros, Surfactants, Academic Press : London, 1984.
44.B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
45.J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
46 D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
47.C. Letizia, P. Andreozzi, A. Scipioni, C. La Mesa, A. Bonincontro, and E.Spigone, J. Phys. Chem. B, 2007, 111, 898
48.R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
49.C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids ,1985, 70,
301.
50.M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441. F. Sala, F.
51.F. Sala, Trifiro, J. Catal., 1974, 34, 68.
52.M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192
53.黃煜騰、鄭耀宗、吳龍暉,燃料電池使用台灣地區生質氣體能源的潛力分析,
八十二年能源經濟學術研討會論文集, 281~301
54.J. Giner and C. Hunter, J. Electrochem. Soc., 1969, 116, 1124.
55.O. Stonehart, J. Appl. Electrochem., 1992, 22, 995
56.E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, J. Electrochemical. Soc., 1998, 135, 2209
57.K. Scott, W.M. Taama, P. Argyropoulos, J. Power Sources, 1999, 79, 43.
58.E. A Ticianelli, C. R. Derouin,A. Redondo, and S. Srinivasan, J. Electrochemical. Soc., 1998, 135, 2209.
59.A. J. Appleby, and F. R. Folkes, Fuel Cell Handbook, Van Nostrand Reinhold,
New York, 1989.
60.Z. Ogumi, T. Kuroe and Z. I. Takehara, J. Electrochem. Soc., 1985, 132, 2601.
61.H. Dohle, J. Divisek, R. Jung, Journal of Power Sources, 2000, 86 ,469–477.
62.T. E. Springer, D. Raistrick, J. Electrohem. Soc., 1989, 136, 1594.
63.T. Freelink, W. Visscher, and J.A.R.van Veen, Surf. Sci., 1995, 335, 353.
64.D. H. Jung, C. H. Lee, and C. S. Kim, J. Power Sources, 1998, 17, 169.