簡易檢索 / 詳目顯示

研究生: 黃偉順
Huang, Wei-Shung
論文名稱: 有機五環素元件之磁電導效應
The magneto conductance responses in pentacene-based devices
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 107
中文關鍵詞: 五環素磁電導
外文關鍵詞: pentacene, magneto conductance
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究有機五環素元件光電流、單載子與雙載子注入之混合磁電導效應,並證實光電流與雙載子注入磁電導生成來自電子電洞對產生與變換過程,而單載子磁電導生成來自載子在缺陷態傳輸。在外加電場作用下,次要載子的注入使主要載子注入產生之磁電導減弱,而使雙載子注入產生之磁電導增強。在上述觀察中,我們認為單載子與電子電洞對磁電導可以並存,但之間有消長關係,使未來進行磁電導機制的討論有更大的彈性。

    The purpose of this thesis is to investigate multiple components of magneto conductance which including photocurrent, unipolar and bipolar injection that contributed to magneto conductance in pentacene-based devices. The photocurrent and bipolar injection contributed magneto conductance is from electron-hole pair formation and energy transfer processes. Also, the unipolar injection magneto conductance is from charge carriers transporting in trap states. In addition, the minority carrier injection can decrease the magneto conductance of majority carrier injection by increasing the electron-hole pair formation. According to results, it is suggested that both single carrier and electron-hole pair contributed magneto conductance could be produced in pentacene-based devices.

    摘要 v Abstract vi 誌謝 vii 圖目錄 xi 第一章 研究領域介紹與實驗動機 1 1-0 前言-有機半導體 1 1-2 有機電子自旋 4 1-2-a 有機自旋閥 4 1-2-b 有機磁場效應 5 1-3 研究動機 13 1-4 大綱 15 第二章 基本理論模型討論 17 2-0 前言 17 2-1 氫原子模型 19 2-1-a 自旋軌道偶合作用(Spin-orbital coupling) 20 2-1-b 超精細結構(Hyperfine interaction) 23 2-1-c 黎曼效應(Zeeman effect) 24 2-1-d 交換偶合作用力(Exchange interaction) 27 2-2 激發態磁場效應 29 2-2-a 分子內與分子間激發態 30 2-2-b 橫向傳輸能力 31 2-2-c 電子、電洞對分離能力 34 2-2-d 三重態激發子與載子交互作用 35 2-2-e 激發態能量轉換路徑 37 2-3 雙極化子模型 40 2-3-a 雙極化子簡介 41 2-3-b 雙極化子磁電導模型 44 2-4 結論 49 第三章 實驗元件製作、儀器架設與量測方法 51 3-0 有機半導體元件製程 51 3-1 ITO導電玻璃基板的製備 53 3-1-a 基板切割 53 3-1-b 基板清洗 53 3-1-c 黃光顯影(Photolithography) 53 3-2 有機半導體元件的製備要點 57 3-2-a ITO基板的清洗 57 3-2-b 陽極PEDOT:PSS的製程 57 3-2-c 主動層Pentacene的製程 58 3-2-d 陰極LiF/Al的製程 60 3-3 磁效應量測儀器架設 63 3-4 有機磁效應元件的量測與分析 65 3-4-a 元件電性與磁性的量測與分析 65 3-4-b 訊號處理與量測方法改進 70 3-5 結論 71 第四章 有機五環素元件磁電導效應 73 4-1 Pentacene元件電場與磁場下特性量測 73 4-1-a 電場量測特性 73 4-1-b 磁場量測特性 76 4-1-c 外加電場對各區段磁電導影響 78 4-1-d 磁電導組成的解析與生成討論 80 4-2 論Pentacene元件光電流磁電導生成機制 83 4-2-a 不同照光頻譜對光電流磁電導產生的影響 83 4-2-b 光電流下正負磁電導組成的來源 85 4-3 論增加缺陷態對單載子注入磁電導的影響 87 4-4 論Pentacene厚度對載子注入後磁電導的影響 94 4-4-a 論Pentacene厚度與元件電性關係 94 4-4-b 論Pentacene厚度與單載子注入磁電導的對應關係 96 4-4-c 論Pentacene厚度與載子注入後正負磁電導的對應關係 99 4-5 結論 100 第五章 結論與未來實驗工作 101 5-1 結論 101 5-2 未來工作 102 參考資料 103 個人自傳 107

    [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis,
    S. C. Gau, and A. G. Macdiarmid, Phys. Rev. Lett. 39, 1098 (1977).
    [2] A. Köhler, J. S. Wilson, and R. H. Friend, Adv. Mater. 14, 701 (2002).
    [3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C.
    Taliani, D. D. C.Bradley, D. A. Dos Santos, J. L. Bre das, M. LoÈ gdlund, and W. R. Salaneck, Nature 397, 121 (1999).
    [4] M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen,
    and P. W. M. Blom, Adv. Mater. 20, 2116 (2008).
    [5] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and
    C. Brabec, Adv. Mater. 18, 2884 (2006).
    [6] D. Braga, and G. Horowitz, Adv. Mater. 21, 1473 (2009).
    [7] J. Cornil, Jean-Luc Brédas, J. Zaumseil, and H. Sirringhaus, Adv. Mater. 19, 1791 (2007).
    [8] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, P. Eitenne,
    G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [9] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
    [10] P. Grunberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, Phys. Rev. Lett.
    57, 2442 (1986).
    [11] Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).
    [12] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, 2nd edition,
    Oxford University Press, Oxford 1999.
    [13] E.L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H.
    Horhold, Phys. Rev. B 46, 9320 (1992).
    [14] J. Kalinowski, Massimo Cocchi, D. Virgili, P. D. Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
    [15] J. Kalinowski, J. Szmytkowski, and W. Stampor, Chem. Phys. Lett. 378, 380
    (2003).
    [16] Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M.
    Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202
    (2005).
    [17] B. Hu and Y. Wu, Nature materials 6, 985 (2007).
    [18] Z. H. Xu and B. Hu, Adv. Funct. Mater. 18, 1 (2008).
    [19] B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500 (2009).
    [20] M. Wohlgenannt and Z. V. Vardeny, J. Phys. Condens. Matter 15, R83 (2003).
    [21] I. V. Tolstov, A.V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M.
    Triebel, and E.L. Frankevich, J. Lumin. 112, 368 (2005).
    [22] N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, Phys.
    Rev. B 80, 241201R (2009).
    [23] P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
    [24] F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Phys. Rev. Lett. 99,
    257201 (2007).
    [25] J. D. Bergeson, V. N. Prigodin, D. M. Lincoln, and A. J. Epstein, Phys. Rev. Lett.
    100, 067201 (2008).
    [26] P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007).
    [27] V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156,
    757 (2006).
    [28] N. Zettili, Quantum Mechanics Concepts and Applications, Wiley Press, New York 2001.
    [29] S. Gasiorowicz, Quantum physics, 3rd edition, Wiley international Edition, Wiley Press, Hoboken 2003.
    [30] D. J. Griffiths, Introduction to Quantum Mechanics, 2nd edition, Prentice Hall Press, Upper Saddle River 2005.
    [31] R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei,
    and Particles, 2nd edition, Wiley Press, New York 1985.
    [32] W. Holzer, A. Penzkofer, and T. Tsuboi, Chem. Phys. 308, 93 (2005).
    [33] Y. Wu and B. Hu, Appl. Phys. Lett. 89, 203510 (2006).
    [34] P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, Phys. Rev. Lett. 86, 1358 (2001).
    [35] A. Köhler and D. Beljonne, Adv. Funct. Mater. 14, 11 (2004).
    [36] A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Bre´das, V. I.
    Arkhipov, P. Heremans, E. V. Emelianova, and H. Ba¨ssler, Phys. Rev. Lett. 93,
    066803 (2004).
    [37] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, Phys. Rev. B 68, 075211 (2003).
    [38] A. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981).
    [39] K. Chakraverty, J. M. Sienko, and J. Bonnerot, Phys. Rev. B 17, 3781 (1978).
    [40] P. A. Bobbert, T. D. Nguyen, W. Wagemans, F. W. A. van Oost, B. Koopmans, and
    M. Wohlgenannt, Synth. Met. 160, 223 (2010).
    [41] T. H. Lee, T. F. Guo, J. C. A. Huang, and T. C. Wen, Appl. Phys. Lett. 92, 153303 (2008).
    [42] P. Shakya, P. Desai, T. Kreouzis, W. P. Gillin, S. M. Tuladhar, A. M. Ballantyne, and J. Nelson, J. Phys.: Condens. Matter 20, 452203 (2008).
    [43] J. Kalinowski, Organic Light-Emitting Diodes: Principles, Characteristics, and Processes, Marcel Dekker Press, New York 2005.
    [44] F. J. Wang, H. Ba¨ssler, and Z. V. Vardeny, Phys. Rev. Lett. 101,236805 (2008).
    [45] M. Obarowska, R. Signerski and J. Godlewski, J. Lumi. 112, 337 (2005).

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE