簡易檢索 / 詳目顯示

研究生: 薛力信
Syue, Li-Shin
論文名稱: 蝴蝶蘭中轉錄因子PabZIP及PaWRKY之特性分析與抗逆境功能之研究
Molecular characterization of two orchid transcription factors, PabZIP and PaWRKY, and their effects on response to biotic and abiotic stresses in transgenic Arabidopsis plants
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 蝴蝶蘭軟腐病阿拉伯芥轉錄因子抗病
外文關鍵詞: Orchid, Erwinia, bZIP, WRKY, transcription factor
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物無法像動物一樣利用移動的方式躲避病原菌或其他生物的攻擊而選擇適合的環境生存,因此當植物遭受病原菌攻擊時,會啟動相關防禦機制阻止病原菌的入侵,一旦植株無法阻擋病原菌快速擴散,即會造成植株的死亡。軟腐病菌 (Erwinia chrysanthemi)是目前台灣蘭園中常見的細菌性病原菌,易造成蘭園大規模的感染,本篇研究主要探討蝴蝶蘭與軟腐菌之間的交互關係。在先期的實驗中利用抑制性扣減雜交法 (suppression subtractive hybridization, SSH)找出感染軟腐菌24小時所誘發的蝴蝶蘭基因。其中轉錄因子在近年來的研究中多次被提及與植物的免疫調控路徑有關,包括對生物及非生物逆境、老化、及次級代謝物的合成等。在本篇的研究中除了探討蘭花中受病菌誘發的轉錄因子PabZIP與PaWRKY之外,也對參與長鏈脂肪碳合成的酵素trans-2-enoyl-CoA-reductase (ECR)是否參與抗病亦有興趣。首先,以軟腐病菌感染蝴蝶蘭的葉子或處理其他不同誘導物,植株體內的PabZIP、PaWRKY及PaECR基因表現量會有顯著改變。接著,利用酵母菌系統可以證實PabZIP及PaWRKY蛋白質具有轉錄因子活性及功能。為了解PabZIP、PaWRKY及PaECR是否與蝴蝶蘭的抗病能力有關及其在抗病上扮演的角色,將這三個蛋白質分別大量表現在阿拉伯芥中,以軟腐病菌感染轉殖株小苗,結果顯示大量表現PabZIP時,會造成轉殖株小苗比野生型抗軟腐菌;至於大量表現PaWRKY及PaECR,在小苗抗病能力上與野生型沒有差異。因此,藉由上述的結果來看,當軟腐病菌感染蝴蝶蘭時,會造成多個基因的表現受到改變,其中PabZIP扮演著正調控的角色,可以阻檔病原菌的入侵。此外,我們也發現大量表現PabZIP轉殖株對鹽的耐受度比野生型高,顯示PabZIP在蝴蝶蘭可能同時參與調控生物及非生物性逆境,本研究對於蘭花轉錄因子PabZIP及PaWRKY的功能性探討將有助於蘭花在軟腐病害上的防治。

    Plants respond to pathogens by regulating a network of signaling pathways that fine-tune transcriptional activation of defense-related genes. The suppression subtractive hybridization strategy was applied in search for genes that were induced after infection of P. amabilis (orchids) by a necrotrophic bacterial pathogen, Erwinia chrysanthemi. As a result, a pool of 73 unique mRNA transcripts from E. chrysanthemi-infected orchids exhibited different expression profiles when compared to healthy plants. Among these, two genes encoding basic leucine zipper and WRKY transcription factors (referred to as PabZIP and PaWRKY, respectively) were found to be rapidly induced in orchid leaves by E. chrysanthemi infection. Translational fusion of PabZIP and PaWRKY with green fluorescence protein revealed the subcellular localization of the protein in the nucleus. To investigate the function of the two transcription factors, transgenic Arabidopsis plants overexpressing PabZIP and PaWRKY were generated. Interestingly, constitutive expression of PabZIP in Arabidopsis induced the activation of various defense-related gene expression, including a jasmonate-responsive gene plant defensin 1.2 (PDF1.2). The induced expression of PDF1.2 gene was not observed in transgenic Arabidopsis plants overexpressing PaWRKY. Subsequently, functional analysis was performed to understand if the PabZIP contributed to resistance to E. chrysanthemi. It was found that transgenic Arabidopsis plants overexpressing PabZIP exhibited reduced levels of necrosis symptoms and cell death, indicating the role of PabZIP in resistance to E. chrysanthemi. Furthermore, expression of the PabZIP gene in transgenic Arabidopsis plants also contributed tolerance to high salinity stress. In summary, the results suggested that the PabZIP may regulate complex transcriptional networks such as defense-related genes, which in turn conferred resistance to E. chrysanthemi and tolerance to salinity stress. The modification of transcriptional control by regulatory transcription factors provides a useful strategy for improving tolerance to biotic and abiotic stresses in plants.

    致謝.......................................................2 目錄.......................................................3 圖目錄.....................................................7 縮寫對照表..................................................9 中文摘要...................................................10 英文摘要...................................................11 1. 前言...................................................13 1.1植物的防禦機制.........................................13 1.1.1 被動性防禦.........................................14 1.1.2 主動性防禦.........................................14 1.1.3 防禦基因與非防禦基因................................15 1.2 蘭花病原菌............................................15 1.2.1 細菌性............................................16 1.2.2 真菌性............................................17 1.2.3 病毒性............................................17 1.3 植物對病原菌反應的訊息傳遞路徑..........................18 1.3.1 水楊酸............................................19 1.3.2 茉莉酸與乙烯.......................................20 1.4 抗病相關的轉錄因子.....................................20 1.4.1 bZIP 轉錄因子......................................21 1.4.2 WRKY轉錄因子.......................................21 1.5 超長鏈脂肪酸..........................................22 1.6 鹽逆境...............................................23 1.7 研究目的..............................................24 2. 材料與方法..............................................25 2.1 菌種與質體............................................25 2.2 細菌培養液............................................26 2.3 酵母菌培養液..........................................26 2.4 蝴蝶蘭成株與培植.......................................26 2.5 阿拉伯芥植株..........................................27 2.6 蝴蝶蘭組織特異性取材...................................27 2.7 蝴蝶蘭病害逆境........................................27 2.8 RNA的萃取............................................27 2.9 反轉錄聚合酶反應......................................28 2.10 聚合酶鏈鎖反應.......................................29 2.11 瓊脂膠體回收DNA片段..................................29 2.12 黏合反應............................................30 2.13 大腸桿菌DH5α轉型實驗.................................30 2.14 質體萃取............................................30 2.15 限制酵素切割質體DNA及DNA定序..........................31 2.16 酵母菌單雜合系統......................................31 2.17 酵母菌勝任細胞.......................................32 2.18 酵母菌轉形作用.......................................32 2.19 酵母菌轉錄活性分析 (構築pGBKT7-PaWRKY)................33 2.20 構築pGBKT7-PabZIP不同片段之融合型蛋白.................33 2.21 酵母菌勝任細胞.......................................33 2.22 酵母菌轉形作用.......................................34 2.23 定量α-Gal (alfa-galactosidase assay)................34 2.24 確認酵母菌成功轉入外來質體.............................35 2.25 阿拉伯芥轉殖-構築35S :: PaWRKY........................35 2.26 構築35S ::PabZIP....................................35 2.27 構築35S :: PaECR....................................36 2.28 製備農桿菌的勝任細胞..................................36 2.29 農桿菌電穿孔轉形.....................................36 2.30 轉殖阿拉伯芥.........................................37 2.31 轉殖植株的篩選.......................................37 2.32 阿拉伯芥轉殖株抗病測試................................38 2.33 轉植株抗病能力測試....................................38 2.34 感染小苗(7天大小苗)...................................38 2.35 PabZIP轉殖株-鹽對發芽率的影響.........................39 2.36 鹽對早期小苗發育的影響................................39 2.37 構築PaWRKY融合報導基因(sGFP)的表現載體.................39 2.38 構築PabZIP融合報導基因(sGFP)的表現載體.................40 2.39 粒子槍轉殖...........................................40 2.40 DAPI染色............................................41 3. 結果...................................................42 3.1 蝴蝶蘭PabZIP與PaWRKY受軟腐菌感染後基因表現分析...........42 3.2 PabZIP及PaWRKY基因組織特異性表現分析....................42 3.3 PabZIP及PaWRKY胺基酸序列特性分析.......................42 3.4 酵母菌單雜合系統確認PaWRKY蛋白與W-box的結合能力..........43 3.5 利用酵母菌系統進行轉錄活性的確認.........................44 3.6 阿拉伯芥轉殖植物的篩選與對軟腐病菌的抵抗能力..............45 3.7 PabZIP轉殖株對鹽逆境的耐受性...........................46 3.8 洋蔥上表皮短暫表現GFP融合蛋白...........................46 4. 討論...................................................47 4.1 轉錄因子在植物受病原菌感染時所扮演的角色..................47 4.2 PabZIP轉錄因子的特性..................................48 4.3 PabZIP在發育及逆境上基因表現調控........................49 4.4 PabZIP在抗病中的角色-生物性逆境.........................49 4.5 PabZIP對鹽逆境的耐受度-非生物性逆境.....................50 4.6 PaWRKY轉錄因子的特性..................................51 4.7 PaWRKY基因表現調控-發育及逆境..........................52 4.8 以阿拉伯芥轉殖株分析蘭花PaWRKY的功能....................52 4.9 以阿拉伯芥轉殖株分析蘭花PaECR的功能.....................52 4.10 未來研究.............................................53 5. 參考文獻................................................55 6. 附錄...................................................83

    Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different Requirements for EDS1 and NDR1 by Disease Resistance Genes Define at Least Two R Gene-Mediated Signaling Pathways in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 95: 10306-10311
    Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7: 601-611
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in Plant-Microbe Interactions. Science 276: 726-733
    Baker CJ, Orlandi EW (1995) Active Oxygen in Plant Pathogenesis. Annual Review of Phytopathology 33: 299-321
    Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a Locus of Arabidopsis thaliana that is Required for Disease Resistance to both a Bacterial and a Fungal Pathogen. Proceedings of the National Academy of Sciences of the United States of America 92: 6597-6601
    Chen C, Chen Z (2002) Potentiation of Developmentally Regulated Plant Defense Response by AtWRKY18, a Pathogen-Induced Arabidopsis Transcription Factor. Plant Physiol. 129: 706-716
    Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses. Plant Cell 14: 559-574
    Cinti DL, Cook L, Nagi MN, Suneja SK (1992) The fatty acid chain elongation system of mammalian endoplasmic reticulum. Progress in Lipid Research 31: 1-51
    Clarke JD, Liu Y, Klessig DF, Dong X (1998) Uncoupling PR Gene Expression from NPR1 and Bacterial Resistance: Characterization of the Dominant Arabidopsis cpr 6-1 Mutant. Plant Cell 10: 557-570
    Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826-833
    Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51: 21-37
    Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology 1: 316-323
    Durrant WE, Dong X (2004) SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology 42: 185-209
    Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends in Plant Science 5: 199-206
    Eulgem T, Weigman VJ, Chang H-S, McDowell JM, Holub EB, Glazebrook J, Zhu T, Dangl JL (2004) Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance. Plant Physiol. 135: 1129-1144
    Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an Essential Component of R Gene-Mediated Disease Resistance in Arabidopsis Has Homology to Eukaryotic Lipases. Proceedings of the National Academy of Sciences of the United States of America 96: 3292-3297
    Flor HH (1971) Current Status of the Gene-For-Gene Concept. Annual Review of Phytopathology 9: 275-296
    Glazebrook J (1999) Genes controlling expression of defense responses in Arabidopsis. Current Opinion in Plant Biology 2: 280-286
    Glazebrook J, Rogers EE, Ausubel FM (1997) USE OF ARABIDOPSIS FOR GENETIC DISSECTION OF PLANT DEFENSE RESPONSES. Annual Review of Genetics 31: 547-569
    Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408: 713-716
    Hammerschmidt R (1999) PHYTOALEXINS: What Have We Learned After 60 Years? Annual Review of Phytopathology 37: 285-306
    Hammond-Kosack KE, Jones JDG (1996) Resistance Gene-Dependent Plant Defense Responses. Plant Cell 8: 1773-1791
    Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology 3: 315-319
    Heinekamp, Heinekamp T, Kuhlmann, Kuhlmann M, Lenk, Lenk A, Strathmann, Strathmann A, Dröge L, Dröge-Laser W (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenyl-propanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Molecular Genetics and Genomics 267: 16-26
    Holmstrom K-O, Mantyla E, Welin B, Mandal A, Palva ET, Tunnela OE, Londesborough J (1996) Drought tolerance in tobacco. Nature 379: 683-684
    Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375-387
    Jackson AO, Taylor CB (1996) Plant-Microbe Interactions: Life and Death at the Interface. Plant Cell 8: 1651-1668
    Jakoby M, Weisshaar B, Dre-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends in Plant Science 7: 106-111
    John MM, Alayne C, Canan C, Jim B, Jeffery LD, Eric BH (2000) Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. The Plant Journal 22: 523-529
    Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5: 325-331
    Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42: 51-80
    Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006) Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224: 1209-1225
    Li J, Brader G, Palva ET (2004) The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell 16: 319-331
    Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature- Responsive Gene Expression, Respectively, in Arabidopsis. Plant Cell 10: 1391-1406
    Lu H-C, Chen H-H, Tsai W-C, Chen W-H, Su H-J, Chang DC-N, Yeh H-H (2007) Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids. Plant Physiol. 143: 558-569
    Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M-F, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J. Exp. Bot. 58: 1999-2010
    Markus S-H, Bernd W (2000) Transactivation properties of parsley proline- rich bZIP transcription factors. The Plant Journal 22: 1-8
    Mondragon-Palomino M, Theissen G (2009) Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot: mcn258
    Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4: 671-683
    Nurnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology 6: 335-345
    Ohlrogge J, Browse J (1995) Lipid Biosynthesis. Plant Cell 7: 957-970
    Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of Ethylene- Induced Transcription of Defense Genes. Plant Cell Physiol. 41: 1187-1192
    P B, K. H O, K. J W (2008) Expression profiling and mapping of defence response genes associated with the barley-Pyrenophora teres incompatible interaction. Molecular Plant Pathology 9: 645-660
    Peizhen Y, Chunhong C, Zeping W, Baofang F, Zhixiang C (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. The Plant Journal 18: 141-149
    Penninckx I, Eggermont K, Terras FRG, Thomma B, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-Induced Systemic Activation of a Plant Defensin Gene in Arabidopsis Follows a Salicylic Acid-Independent Pathway. Plant Cell 8: 2309-2323
    Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux J-P, Broekaert WF (1998) Concomitant Activation of Jasmonate and Ethylene Response Pathways Is Required for Induction of a Plant Defensin Gene in Arabidopsis. Plant Cell 10: 2103-2114
    Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. Plant Cell 10: 1571-1580
    Poulos A (1995) Very Long-Chain Fatty-Acids in Higher Animals - a Review. Lipids 30: 1-14
    Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U, Lolle SJ (2000) FIDDLEHEAD, a Gene Required to Suppress Epidermal Cell Interactions in Arabidopsis, Encodes a Putative Lipid Biosynthetic Enzyme. Proceedings of the National Academy of Sciences of the United States of America 97: 1311-1316
    Richard L, Paul HG, Pierre JGMdW, Matthieu HAJJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. The Plant Journal 23: 735-745
    Riechmann JL, Heard J, Martin G, Reuber L, Z C, Jiang, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, L. Yu G (2000) Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science 290: 2105-2110
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic Acquired Resistance. Plant Cell 8: 1809-1819
    Sang-Keun O, Kwang-Hyun B, Jeong Mee P, So Young Y, Seung Hun Y, Sophien K, Doil C (2008) Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytologist 177: 977-989
    Schutze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends in Plant Science 13: 247-255
    Schwechheimer C, Bevan M (1998) The regulation of transcription factor activity in plants. Trends in Plant Science 3: 378-383
    Singh KB, Foley RC, O chez L (2002) Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology 5: 430-436
    Soderman EM, Brocard IM, Lynch TJ, Finkelstein RR (2000) Regulation and Function of the Arabidopsis ABA-insensitive4 Gene in Seed and Abscisic Acid Response Signaling Networks. Plant Physiol. 124: 1752-1765
    Todd J, Post-Beittenmiller D, Jaworski J, G (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. The Plant Journal 17: 119-130
    Tokunori H, Mihoko A, Yasuo K, Tsukaho H (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. The Plant Journal 19: 679-689
    Tsai T-M, Chen Y-R, Kao T-W, Tsay W-S, Wu C-P, Huang D-D, Chen W-H, Chang C-C, Huang H-J (2007) PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis , is induced by cold, wounding, and pathogen challenge. Plant Cell Reports 26: 1899-1908
    Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired Resistance in Arabidopsis. Plant Cell 4: 645-656
    van Loon LC, Bakker PAHM, Pieterse CMJ (1998) SYSTEMIC RESISTANCE INDUCED BY RHIZOSPHERE BACTERIA. Annual Review of Phytopathology 36: 453-483
    Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A Role for Jasmonate in Pathogen Defense of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 95: 7209-7214
    Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. The Plant Journal 15: 501-510
    Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a Key Player of the Basic Leucine Zipper Transcription Factor Family for Conferring Abscisic Acid Sensitivity and Salinity and Drought Tolerance in Rice. Plant Physiol. 148: 1938-1952
    Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD Gene of Arabidopsis Reveals a Link between Adhesion Response and Cell Differentiation in the Epidermis. Plant Cell 11: 2187-2202
    Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA Reductase Gene Reveal an Essential Role for Very- Long-Chain Fatty Acid Synthesis in Cell Expansion during Plant Morphogenesis. Plant Cell 17: 1467-1481
    Zhou J-M, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid. Molecular Plant-Microbe Interactions 13: 191-202
    Zhu J-K (2001) Plant salt tolerance. Trends in Plant Science 6: 66-71

    下載圖示 校內:2012-02-12公開
    校外:2012-02-12公開
    QR CODE