| 研究生: |
郭春滿 KER, CHOON-MUAR |
|---|---|
| 論文名稱: |
中國西北部柴達木盆地北緣榴輝岩之地球化學特性 Geochemical characteristics of eclogites from northern Qaidam basin, Central China |
| 指導教授: |
楊懷仁
Yang, Huai-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 釹同位素 、地球化學特徵 、大地構造演化模式 、榴輝岩 、柴北緣 |
| 外文關鍵詞: | Nd isotope, tectonic model, geochemistry characteristic, North Qaidam, eclogite |
| 相關次數: | 點閱:110 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中國西北部柴達木盆地北緣(柴北緣)地區高壓-超高壓榴輝岩的發現,顯示中國大陸中西部存在一條長約350公里之高壓-超高壓變質岩帶,這些榴輝岩是釐清中國大陸之區域地質構造及重建亞洲板塊演化史的重要基石。本研究分析了31個採自柴北緣東側都蘭、中段錫鐵山、西側綠梁山等地區的榴輝岩樣本之全岩主要元素、微量元素含量和143Nd/144Nd同位素比值,來探討控制榴輝岩化學組成變化之因子,藉此來瞭解柴北緣地區的構造環境和重建其大地構造演化模式。
柴北緣榴輝岩的143Nd/144Nd同位素比值落0.512303 - 0.513588範圍內,顯示為海洋岩石圈物質。由柴北緣地區的鋯石U-Pb定年證據得知變質年齡為450 Ma。經由變質年齡反演推算可將榴輝岩分為εNd(450)值> 9之第一類型和εNd(450)值< 9之第二類型。第一類型的榴輝岩只出現在西側的綠梁山地區,具有類似正常型中洋脊玄武岩(N-MORB) 之低LREE/HREE比值。但是其εNd(450)值 (9~15) 和Sm/Nd (0.23~0.28)比值則遠高於正常型中洋脊玄武岩(7~9和0.22)。此外,第一類型的榴輝岩之εNd(450)和147Sm/144Nd呈現反比趨勢。此現象為兩種地質作用之結果:首先,變質作用過程中的礦物分離效應,使石榴子石富集而增高其147Sm/144Nd比值。之後,榴輝岩與流體或岩漿(熔體)反應而使其147Sm/144Nd比值降低,造成對εNd(450)校正量之低估,導致εNd(450)值偏高。
第二類型的榴輝岩其LREE/HREE比值較第一類型正常型中洋脊玄武岩高,可以根據微量元素的含量和變化趨勢再細分為兩群。一群為無HFSE虧損的富集型中洋脊玄武岩(E-MORB),另一群則是具有明顯HFSE虧損的典型島弧型岩漿(arc magma)。這些原岩為富集型中洋脊玄武岩的榴輝岩分佈於柴北緣地中段和東側。而具有島弧訊號的榴輝岩則集中於柴北緣的東側。
由柴北緣西側(綠梁山)至東側(都蘭),具島弧特徵的原岩愈趨明顯,此系統性之分佈可以兩個大地構造模式來解釋。模式一為柴北緣地區曾經歷兩期不同隱沒方向的構造事件,早期為古祈連洋向東隱沒,於東側形成具島弧化學特徵之物質;之後再經由南北地塊的聚合使海洋地殼隱沒經歷高壓-超高壓變質,折返至地表而形成。模式二為大陸地殼朝南北向張裂和隱沒作用,由西側地殼先開始張裂然後向東延伸。因此西側會較早形成海洋地殼,具有較高機率出露中洋脊特徵的榴輝岩,而東側則因張裂時間較晚,海盆面積較小,而有相對較高比例之島弧物質。因此形成現今柴北緣地區榴輝岩原岩的地理分佈現象。
The occurrence of high-pressure and ultrahigh-pressure eclogites in the northern border of Qaidam basin in central China indicates the existence of a 350 km orogenic belt. These eclogites provide constraints for reconstructing the tectonic evolution history in this region. In this study, we analyzed thirty-one eclogites sampled from the eastern (Dulan), central (XiTieShan) and western (LuLiangShan) parts of this orogenic belt for their major and trace element abundances as well as 143Nd/144Nd isotopic ratios to investigate the factors controlling geochemical compositions of these eclogites and to infer the tectonic evolution in this region.
The 143Nd/144Nd ratios of these eclogites vary in the range of 0.512303- 0.513588 indicating derivation from oceanic lithosphere. Dating zircons in these eclogites constrains the metamorphic age to be ~450 Ma. After corrected for the metamorphic age, theεNd values of the studied eclogites can be divided into two groups; greater than 9 for group 1 and less than 9 for group 2. Group 1 samples only occur at the western portion of the studied orogenic belt. They have low LREE/HREE ratios resembling that of N-MORB. However, theirεNd(450) and 147Sm/144Nd values (9~15 and 0.23-0.28, respectively) are higher than that of N-MORB (7~9 and ~0.22, respectively). Furthermore, group 1 samples define a negative correlation between εNd(450) and 147Sm/144Nd ratios. The sample with the highest 147Sm/144Nd value has εNd(450) approaching the value of MORB. These features can be explained by combination of two processes; first, concentrating garnet by metamorphic differentiation, then, fluid or melt-infiltration to lower the 147Sm/144Nd ratios resulting in under-correction for theεNd(450) values.
In contrast, group 2 samples have LREE/HREE higher than group 1 samples, and can be further divided in to two subgroups characterized by the absence and presence of HFSE depletions, respectively. The geochemical characteristic of the former are similar to those of the E-MORB whereas those of the latter are of typical arc lavas. Those metamorphosed from E-MORB protoliths were collected from the central and eastern parts while eclogites with arc signatures were mainly sampled at the eastern edge of northern Qaidam Basin. Such a systematic spatial distribution possibly indicates two subduction events. The arc protoliths might be resulted from the eastward collision between the paleo-Qilian ocean and its near-by continent. Then, the subsequent northward subduction of the paleo-Qilian ocean and the associated eastern arcs completely consumed this ocean-arc system leading to the formation of north Qaidam eclogites. Alternatively, the relative proportions of ocean and arc protoliths might reflect the size of the consumed ocean with high proportions of arc-related protoliths corresponding to a smaller ocean.
英文部分:
Arculus, R. J. (1987) The significance of source versus process in the tectonic controls of magma genesis. J. Volcanol. Geotherm. Res., Vol.32: Pg1-12.
Becker, H., Jochum, K. P., and Carlson, R. W. (2000) Trace elements fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol., Vol.163: Pg65–99
Benoit, M., Polv, M., and Ceuleneer, G. (1996) Trace elements and isotopic characterization of mafic cumulates in a fossil mantle diapir (Oman ophiolite). Chem. Geol., Vol.134: Pg99-214.
Bernard-Griffiths, J., Peucat, J. J., Cornichet, J., Ponce De Léon, M. I., and Gilibarguchi, J. I. (1985) From the cabo ortegal complex, galicia, spian: An example of REE immobile conserving MORB-like patterns during high-grade metamorphism. Chem. Geol., Vol.52: Pg217-225.
Bernard-Griffiths, J., Peucat, J. J., and Menot, R. P. (1991) Isotopic (Rb-Sr, U-Pb and Sm-Nd) and trace element geochemistry of eclogites from the pan-african belt: A case study of REE fractionation during high-grade metamorphism. Lithos, Vol.27: Pg43-57.
Brenan, J. M., and Watson, E. B. (1991) Partitioning of trace elements between olivine and aqueous fluid at high P-T conditions: inplacation for the effect of fluid composition on trace elements transport. Earth Planet. Sci. Lett., Vol.107: Pg672-688.
Carswell, D. A., Cuthbert, S. J., and Ravna, E. J. K. (1999) Ultrahigh-pressure metamorphism in the Western Gneiss Region of the Norwegian, Caledonides. International Geology Review, Vol. 41 (11): Pg955-966.
Chavagnac, V., and Jahn, B. M. (1996) Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem. Geol., Vol.133: Pg29-51.
Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschits of the western Alps: a frist record and some consequences. Contrib. Mineral Pertol., Vol.86: Pg107-118.
Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet. Sci. Lett., Vol.212: Pg1-14.
Cox, K., Bell, J. D., and Pankhurst, R. J. (1979) The interpretation of igneous rocks. Allen and Unwin: Pg450.
Cuthbert, S. J., Carswell, D. A., Krogh-Ravna E. J., and Wain, A. (2000) Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, Vol.52 (1-4): Pg165-195.
Donald, J. D. (1988) Neodymium isotope geochemistry: an introduction. Springer-Verrlag, Berlin Heidelberg, New York.
Dobrzhinetskaya, L. F., Eide, E. A., Larsen, R.B., Sturt, B. A., Tronnes, R. G., Smith, D. C., Taylor, W. R., and Posukhova, T.V. (1995) Mircodiamond inhigh-grade metamorphic rocks of the western gneiss region, Norway. Geology, Vol.23: Pg597-600.
Edwards, C. M., Menzies, M.A., Thirlwall, M. F., Morris, J. D., Leeman, W. P., and Harmon, R. S. (1994) The transition to patassis alkaline volcanism in islands arcs: The Ringgit-Beser complex, east Java, Indonesia. J. Petrol. Vol.35: Pg1557-1595.
Eggin, S. M., Woodhead, J. D., and Kinnsly, L. P. J. (1997) A simple method of the precise Determination of ≥ 40 trace elements in geological samples by ICP-MS using Enriched isotope internal standardization. Chem. Geol., Vol.134: Pg. 311-326.
Godard, G. (2001) Eclogites and their geodynamic interpretation: a history. J. Geodynamic, Vol. 32: Pg165-203.
Gou, J. H., Zhai, M. G., Oh, C. W., and Kim, S. W. (2005) 230Ma eclogite from Bibong, Hongseong area, Gyeonggi Massif, Koreo: UHP metamorphism, zircon SHRIMP U-Pb ages tectonic implications. 7th International Eclogite Conference, MITT. ÖSTERR. MINER. GES., Vol.150: Pg47.
Griffin, W. L., and Brueckner, H. k. (1985) REE, Rb-Sr, Sm-Nd studies of Norwegian eclogites. Chem. Geol., Vol.52 (2): Pg249-271
Gunter, F. (1986) Principle of isotope geology (2nd). John, Wiley & Sons, Inc, New York.
Hart, S. R., and Reid, M. R. (1991) Rb/Cs fractionation: A link between granulite metamorphism and S-process. Geochim. Cosmochim. Acta, Vol.55: Pg2379-2383.
Hofmann, A. W., Jochum, K. P., Seufert, M., and White, W. M. (1986) Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett., Vol.79: Pg33-45.
Irvine, T. N., and Baragar, W. R. A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, Vol.50: Pg139-155.
Jahn, B. M. (1999) Sm-Nd isotope tracer study of UHP metamorphic rocks: implication for continental subduction and collisional tectonics. International Geology Review, Vol.41: Pg.859-885.
Jahn, B. M., Jean, C., and Cong, B. (1996) Ultrahigh-εNd eclogites from an ultrahigh - pressure Metamorphic terrane of China. Chem. Geol., Vol.127: Pg61-79.
John, T., Scherer, E. E., Haasea, K., and Schenk, V. (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet. Sci. Lett., Vol.227: Pg441– 456.
Kelley, A. K., Plank, T., Ludden, J., and Staudigel, H. (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, Vol.4 (6): Pg1-21.
Keppler, H. (1996) Constraints from partitioning experiments on the composition of subduction zone fluid. Nature, Vol.380: Pg237-240.
Kersting, A. B., and Arculus, R. J. (1995) Pb isotope composition of Klyuchevskoy volcano, Kamachatka and North Pacific sediments: Implications for magma genesis and crustal recycling in the Kamchatkan arc. Earth Planet. Sci. Lett., Vol.136: Pg133-148.
Liou, J. G., Zhang, R. Y., Ernst, W. G. (1998)High-pressure minerals from deeply subducted metamorphic rocks. Review in Mineralogy, Vol.37: Pg31-96
Lappin, M. A. and Smith, D. C. (1978) Mantle-equilibrated orthopyroxene eclogite pods from the Basal gneisses in the Selje district, western Norway. J. Petrol, Vol.19: Pg530-584.
McDonough, W. F., Sun, S. S., Ringwood, A. E. Jagoutz, E., and Hofmann, A. W. (1992) Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the earth. Geochim. Cosmochim. Acta, Vol.56: Pg1001-1012.
Meschede, C. A. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol., Vol.56: Pg207-218.
Meurer, W. P., Sturm, M. A., Klein,E. M., and KarsonJ. A. (2001) Basalt compositions from the Mid-Atlantic Ridge at the SMARK area (22³30PN to 22³50PN) implications for parental liquid variability at isotopically homogeneous spreading centers. Earth Planet. Sci. Lett., Vol.186: Pg451-469.
Miller, D. M., Goldstein, S. L., and Langmuir, C. H. (1994) Cerium/Lead and Lead isotopic rotios in arc magmas and the enrichment of lead in the continens. Nature, Vol.368: Pg337-364.
Miyashiro, A. (1974) Volcanic rock series in island arcs and active continental margins. Am. J. Science, Vol.274: Pg321-355.
Mullen, E. D. (1983) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and it implications for petrogenesis. Earth Planet. Sci. Lett., Vol.62: Pg. 53-62.
Nagao, T., Hasey, Y., Nagamine, S., Kakabuchi, S., and Sakaguchi, K. (1999) Late miocene to middle Pleistocene Hisatsu volcanic rocks generated from heterogenous magma sources: Evidence from temporal-spatial variation of distribution and chemistry of the rocks. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. (Ganseki Kobutsu Kosho Gakkai-Shi) Vol.94: Pg461-481.
Niu, Y. L., and Batiza, R. (1997) Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Plan. Sci. Lett., Vol.148: Pg471-483.
Pearce, J. A., and Cann, J. R. (1973) Tectonic setting of basic volcanic rocks determined using trace elements analysis. Earth Planet. Sci. Lett., Vol.19: Pg290-300.
Rudnick, R. L., and Fountain, D. M. (1995) Nature and composition of the continental crust: A lower crustal perpective. Rev. Geophys., Vol.33: Pg267-309.
Scherer, E. E., Cameron, K. L. and Blichert-Toft, J. (2000) Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effect of trace minerals inclusions. Geochim. Cosmochim. Acta, Vol.64: Pg3413-3432
Shatsky, v. s., Kozmenko, O. A., and Sobolev, N. V. (1990) Behaviour of rare-earth elements during high-pressure metamorphism. Lithos, Vol.25: Pg219-226.
Shervais, J. W. (1982) Ti-V polts and the petrogenesis of the mogern and ophiolitic lavas. Earth Planet. Sci. Lett., Vol.59: Pg101-118
Shinjo, R., Chung, S. L., Kato, Y., and Kimura, M. (1999) Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from Okinawa trough and RyuKyu arc: Implication for the evolution of a young, intracontinental back arc basin. J. Geophys. Res. Vol.B104: Pg10591-10608.
Shinjo, R., Woodhead, J. D., and Hergt, J. M. (2000) Geochemical variation within the northern RyuKyu ARC: Magma source compositions and geodynamic inplicaitons. Contrib. Mineral. Petrol., Vol.140: Pg263-282
Smith, A. D., and Huang, L. Y. (1997) The Use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionization mass spectrometry. Journal of National Cheng Kung University, Vol.32 Scl. Engineering and Medicine Science Section: Pg1-10.
Smith, D. C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, Vol.310: Pg641-644
Sneeringer, M., Hart, S. R., and Shimizu, N. (1984) Strontium and samarium diffusion in diopside. Geochim. Cosmochim. Acta, Vol.48: Pg1589-1608.
Song, S. G., Yang, J. S., and Lios, J. G. (2003a) Petrology, geochemistry and isotopic ages of eclogites from the dulan UHPM Terrance, the North Qaidam, Nw china. Lithos, Vol.70: Pg195-211.
Song, S. G., Yang, J. S., Xu, Z. Q., Liou, J. G., and Shi, R. D. (2003b) Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorphic Geol., Vol.21: Pg631-644.
Sun, S. S., (1980) Lead isotopic study of young volcanic rock from mid-ocean ridges, ocean island and island arc. Phil. Trans. R. Soc. Lond., Vol.A297: Pg409-445
Sun, S. S., and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process, in Sanders, A. D. and Norry, M.J. eds., Magmatism in the Ocean Basins, Geological Society, Special Publication, No.42: Pg313-345.
Trosvik, T. H. (2003) The rodinia jigsaw puzzle. Science, Vol.300: Pg1379-1381.
Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelly, S., Ven Calsteren, P., and Deng. W. (1996) Post-collisional , shoshonitic volcanism on the Tibetan Plateu: implications for convective thinning of the lithosphere and the source of ocean island basaltd. J. Petrology, Vol.37: Pg45-71.
Wain, A. (1997) New evidence for coesite in eclogite and gneisses: Defining an ultrahigh-pressure province in the Western Gneiss region of Norway. Geology, Vol.25 (10): Pg927-930.
Winter, J. D. (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.
Wood, D. A., Joron, J. L. and Treuil, M. (1979) A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth Planet. Sci. Lett., Vol.45: Pg326-336.
Yang, J. S., Wooden, J. L., Wu, C. L., Liu, F. L., Xu, Z. Q., Shi, R. D., Katayama, I., Liou J. G., and Maruyama, S. (2003) SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrance, east China. J. Metamorphic Geol., Vol.21: Pg551-560.
Yang, J. S., Xu, Z. Q., Song, S. G., Zhang, J. X., Wu, C. L., Shi R. D., Li, H. B., and Brunel, M., (2001) Discovery of coesite in the North QaidamEarly Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China. Earth Planet. Sci. Lett., Vol.333: Pg719-724.
Yang, T. F., Yang, C. C., Lee, C. Y., Chung, S. L., and Chen, C. H. (1996) NTUG rock standards for geochemical analysis. Journal of the Geological Society of China, Vol.39 (3): Pg307-323.
Ye, k., Cong, B. L., and Ye, D. (2000) The possible subduction of continental material to depths greater than 200km. Nature, Vol.407: Pg734-736.
Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S., and Cui, J. W. (2001) Petrology and geochronology of eclogite from the western segment of the Altyn Tagh, northwestern China. Lithos, Vol.56: Pg187-206.
Zhang, J.X., Yang, J. S., Mattinson, C. G., Xu, Z.Q., Meng, F. C., and Shi, R.D. (2005) Two contrasting eclogite cooling histories, North Qaidam HP/UHPterrane, western China: Petrological and isotopic constraints. Lithos, IN PRESS.
Zhang, R. Y., and Liou, J. G. (1998) Ultrahigh-pressure metamorphism of the sulu terrance, eastern China: A prospective view. Continental Dymanics.
Zimmer, M., KrGner A., Jochum K. P., Reischmann T., and Todt W. (1996) The Gabal Gerf complex: A Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa. Chem. Geol., Vol.123: Pg29-51.
中文部分:
(依姓名筆畫順序排列)
于海峰、陸松年、梅華林、趙風清、李懷坤、李惠民 (1999) 中國西部新元古代榴輝岩-花崗岩帶和深層次韌性剪切帶特徵及其大陸再造意義。岩石學報,第15卷,第4期:532-538頁。
王惠初,袁桂邦,辛後田,郝國傑,鄭健康,張寶華 (2001) 柴北緣綠梁山地區榴輝岩的產狀及其成因意義初探。中國地質,第 3 卷,第 4 期:22-28頁。
林宗祺 (2002) 北祈連造山帶中西段基盤岩地球化學及年代學研究。國立成功大學地球科學研究所碩士論文,共131頁。
孟繁聰、張建新、楊經綏、許志琴 (2003) 柴北緣錫鐵山榴輝岩的地球化學特徵。岩石學報,第19卷,第3期:435-442頁。
孟繁聰、張建新、楊經綏、楊懷仁 (2004) 柴北緣斜長角閃岩的地球化學特徵及其構造背景。岩石學報,第20卷,第5期:1271-1281頁。
胡能高、揚家喜、趙東林 (1996),北秦嶺榴輝岩Sm-Nd同位素年齡。礦物學報,第16卷,第4期:349-352頁。
郝國傑,陸松年,李懷坤,鄭建康 (2001) 柴北緣沙柳河榴輝岩岩石學及年代學初步研究。前寒武紀研究進展,第 24 卷,第 3 期:154-162頁。
張建新、張澤明、許志琴、楊經綏、崔軍文 (1999) 阿爾金構造帶西段榴輝岩的Sm-Nd及U-Pb年齡---阿爾金構造帶中加里東期山根存在的證據。科學通報,第44卷,第10期:1109-1112頁。
張建新、萬渝生、孟繁聰、楊經綏、許志琴 (2003) 柴北緣夾榴輝岩的片麻岩 (片岩) 地球化學、Sm-Nd和U-Pb同位素研究 --- 深俯沖的前寒武紀變質基底。岩石學報,第19卷,第3期:443-451頁。
張建新、楊經綏、許志琴、孟繁聰、宋述光、李海兵、史仁燈 (2002) 阿爾金榴輝岩中超高壓變質作用證據。科學通報,第47卷,第3期:231-234頁。
張建新、楊經綏、許志琴、張澤明、陳 文、李海兵 (2000) 柴北緣榴輝岩的峰期和退變質年齡:來自U-Pb 及Ar-Ar同位素測定的證據。地球化學,第29卷,第3期:217-222頁。
許志琴、張澤明、劉福來、楊經綏、李海兵、楊天南、邱海峻、李天福、孟繁聰、陳世忠、唐哲民、陳方遠 (2003) 蘇魯高壓 – 超高壓變質帶的折返構造及折返機制。地質學報,第77卷,第4期:433-450頁。
郭進京 (2000) 柴北緣錫鐵山地區灘間山群構造變形分析。前寒武紀研究進展,第 23 卷,第 3 期:147-152頁。
陸松年,王惠初,李懷坤,袁桂邦,辛後田,鄭健康 (2002) 柴達木盆地北緣“達肯大阪群”的再厘定。地質通報,第21卷,第1期:19-23頁。
楊經綏、許志琴、李海兵、吳才來、崔軍文、張建新、陳文 (1998) 我國西部柴北緣地區發現榴輝岩。科學通報,第43卷,第14期:1544-1549頁。
楊經綏、許志琴、宋述光 (2000) 青海都蘭榴輝岩的發現:試論我國中央造山帶中的高壓-超高壓變質帶的分佈及構造意義。地質學報,第74卷,第2期:156-168頁。
楊經綏、張建新、孟繁聰、史仁燈、吳才來、許志琴、李海兵、陳松永 (2003),中國西部柴北緣---阿爾金的超高壓變質榴輝岩及其原岩性質探討。地質前緣,第10卷,第3期:291-314頁。
董國安 (1999) 南祈連地區基盤岩及花崗岩類之釹-鍶同位素及地球化學研究。國立成功大學地球科學研究所碩士論文,共81頁。
趙東林 (1996) 北秦嶺官坡地區柯石英榴輝岩變質作用的P-T-t軌跡。西安地質學報,第19卷,第2期:28-33頁。