| 研究生: |
蔡明峻 Tsai, Ming-Jiun |
|---|---|
| 論文名稱: |
Ras相關蛋白Rab11與受Brefeldin A抑制之鳥糞嘌呤核苷酸交換因子蛋白之間的交互作用 Interaction between Ras-related Protein Rab11 and Brefeldin A-inhibited Guanine Nucleotide-exchange Proteins |
| 指導教授: |
李純純
Li, Chun-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 囊泡運輸 、小GTP酶 、腺嘌呤核甘酸二磷酸核醣化因子 、鳥糞嘌呤核甘酸交換因子 |
| 外文關鍵詞: | vesicular trafficking, small GTPase, ADP-ribosylation factor, guanine nucleotide-exchange factor |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腺嘌呤核苷二磷酸核糖化因子 (ADP-ribosylation factors; Arfs)屬於Ras家族的一員,主要透過結合GTP的活化態構型與結合GDP的失活態構型間循環轉換以調控細胞內囊泡運輸影響其胞器結構和細胞型態。 Arfs與GTP結合後被活化,進而召集鞘蛋白質 (coat protein)或銜接蛋白 (adaptors)幫助囊泡出芽形成,有助於調節胞器間囊泡的運輸。 BIG1和BIG2為受brefeldin A抑制之Arf鳥糞嘌呤核苷酸交換因子(brefeldin A-inhibited Arf guanine nucleotide -exchange factors),最初發現存在於小牛腦細胞中約670 kDa的蛋白複合物中,BIG1與BIG2具有約200個胺基酸的保存性Sec7結構域,負責加速GDP離開Arfs使GTP進入結合位。BIG1與BIG2主要分布於高基氏體、早期內體、循環內體和細胞膜,據研究指出BIG2參與調控integrin β1再循環的運輸,而BIG1與BIG2皆與細胞遷移的調控有關。 我們的實驗結果顯示BIG1與BIG2能夠和Rab11交互作用,調控內體囊泡的運輸。而最近幾項研究證明小GTP結合酶Arf與Rab透過Rab–ArfGEF– Arf之路徑以協調膜運輸。 我們的實驗證明參與調節內吞囊泡運輸之Rab11蛋白與BIG1和BIG2之間有交互作用。透過酵母菌雙雜交實驗與GST pull down實驗證明BIG1與BIG2的C端片段可與野生型和GTP結合活化型態的Rab11蛋白交互作用。透過共軛焦顯微鏡觀察到內源性BIG1/2與Rab11在細胞核周圍區域位置重疊,並且內源性BIG1與BIG2能夠與Rab11免疫共沉澱,證明細胞內BIG1/2與Rab11的相互作用。 在HeLa細胞中敲除 (knockdown) Rab11會造成細胞內BIG1分布位置的改變,並降低BIG1的蛋白表現量,但並不會使BIG2的位置及蛋白量造成影響。 在HeLa細胞中抑制BIG1及BIG2造成內源性Rab11蛋白量降低。我們利用Balifomycin A1和chloroquine等溶酶體抑制劑來抑制溶酶體降解路徑,抑制敲除BIG1或BIG2造成Rab11的蛋白降解。 CD44是一種細胞表面蛋白,調控細胞遷移 (migration)、細胞粘附 (adhesion)等細胞功能,而BIG1、BIG2或Rab11敲除後造成細胞內源性CD44蛋白表現量下降。 雖然還需要更多實驗來研究BIG1/2是否通過與Rab11的相互作用以調控囊泡內吞作用或是細胞表面蛋白的再循環進而影響細胞遷移,我們實驗結果說明Rab11可能能夠與BIG1和BIG2協同調控囊泡的內吞路徑,進而影響細胞遷移或黏附等細胞功能。
ADP-ribosylation factors (Arfs) belong to the Ras superfamily of small GTPases function through a cycle between active GTP-bound and inactive GDP-bound conformations to regulate intracellular membrane transport, organelle structure, and cell morphology. Activated Arf-GTP proteins recruit coat proteins and/or adaptors to initiate vesicular formation, hence help regulating transportation between organelles. Two brefeldin A-inhibited Arf guanine nucleotide-exchange factors (GEFs), known as BIG1 and BIG2, purified together in ca. 670-kDa multiprotein complexes from bovine brain cytosol, sharing the evolutionary conserved ~ 200 amino-acid Sec7 domain that accelerating the replacement of Arf bound GDP with GTP. BIG1 and BIG2 Localized at Golgi, early endosome, recycling endosome and plasma membrane, and BIG2 was reported to involve in regulating recycling of integrin β1 back to the plasma membrane. Functions of BIG1 and BIG2 are also implicated in regulation of cell migration. Several studies reported recently that Arf and Rab small GTPase act coordinately by Rab-ArfGEF-Arf cascades in regulating membrane trafficking. Here, our data demonstrated that BIG1 and BIG2 interact with Rab11, a protein that participate in regulation of cargo transport back to cell surface in endocytic pathway. Associations of BIG1 or BIG2 with Rab11, wildtype and GTP-bound mutant, but not GDP-bound mutant were confirmed by using yeast two-hybrid and GST pull down assays. The interacting regions were mapped to the C-terminal fragments on BIG1 or BIG2. Apparent overlap of endogenous BIG1/2 with Rab11 in the perinuclear region in confocal microscopy and Rab11 coimmunoprecipitated together with BIG1 or BIG2, suggesting an in vivo interaction of BIG1/2 with Rab11. Knockdown of Rab11 in HeLa cells interfered with BIG1 localization and decreased protein amount of BIG1, but not BIG2. Protein amounts of Rab11 were decreased in BIG1- or BIG2-silencing cells. Inhibition of lysosomal degradation pathway by Balifomycin A1 or chloroquine markedly suppressed Rab11 degradation induced by BIG1 or BIG2 knockdown. Depletion of BIG1, BIG2, or Rab11 resulted to decrease the protein amounts of CD44, a multifunctional cell surface protein with critical roles in cell-cell adhesion, cell migration and progression and metastasis of cancer cells. Although it require more experiments to understand whether BIG1/2 contribute to cell migration through interaction with Rab11 to regulate the endocytic and recycling of cell surface protein, our data here suggest that BIG1/2 may coordinate with Rab11 to regulate the endocytic pathway that may participate in various cell functions such as cell-cell adhesion and cell migration.
1. Takai YS, Matozaki T: Small GTP-binding proteins. Phys rev 2001, 81:153-208.
2. Shin HW, Nakayama K: Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic. J Biochem 2004, 136(6):761-767.
3. Wennerberg K, Rossman KL, Der CJ: The Ras superfamily at a glance. J Cell Sci 2005, 118(Pt 5):843-846.
4. D'Souza-Schorey C, Chavrier P: ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006, 7(5):347-358.
5. Donaldson JG, Jackson CL: ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 2011, 12(6):362-375.
6. Wright J, Kahn RA, Sztul E: Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014, 71(18):3419-3438.
7. Kondo Y, Hanai A, Nakai W, Katoh Y, Nakayama K, Shin H-W: ARF1 and ARF3 are required for the integrity of recycling endosomes and the recycling pathway. Cell Struct Funct 2012, 37(2):141-154.
8. Bos JL, Rehmann H, Wittinghofer A: GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007, 129(5):865-877.
9. Jackson CL, Casanova JE: Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends cell biol 2000, 10(2):60-67.
10. Bui QT, Golinelli-Cohen MP, Jackson CL: Large Arf1 guanine nucleotide exchange factors: evolution, domain structure, and roles in membrane trafficking and human disease. Mol Genet Genomics 2009, 282(4):329-350.
11. Achstetter T, Franzusoff A, Field C, Schekman R: SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J Biol Chem 1988, 263:11711-11717.
12. Togawa A, Morinaga N, Ogasawara M, Moss J, Vaughan M: Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. J Bio Chem 1999, 274(18):12308-12315.
13. Morinaga N, Tsai SL, Moss J, Vaughan M: Isolation of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP ribosylation factor (ARF) 1 and ARF3 that contains a Sec7-like domain. Proc Natl Acad Sci U S A 1996, 93:12856-12860.
14. Ramaen O, Joubert A, Simister P, Belgareh-Touze N, Olivares-Sanchez MC, Zeeh JC, Chantalat S, Golinelli-Cohen MP, Jackson CL, Biou V et al: Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors. J Biol Chem 2007, 282(39):28834-28842.
15. Casanova JE: Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 2007, 8(11):1476-1485.
16. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB: Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 2011, 7(10):e1002217.
17. Fukuda M: Regulation of secretory vesicle traffic by Rab small GTPases. Cell Mol Life Sci 2008, 65(18):2801-2813.
18. Lee MT, Mishra A, Lambright DG: Structural mechanisms for regulation of membrane traffic by rab GTPases. Traffic 2009, 10(10):1377-1389.
19. Pfeffer SR: Structural clues to Rab GTPase functional diversity. J Biol Chem 2005, 280(16):15485-15488.
20. Vieira OV, Bucci C, Harrison RE, Trimble WS, Lanzetti L, Gruenberg J, Schreiber AD, Stahl PD, Grinstein S: Modulation of Rab5 and Rab7 Recruitment to Phagosomes by Phosphatidylinositol 3-Kinase. Mol Biol Cell 2003, 23(7):2501-2514.
21. Wandinger-Ness A, Zerial M: Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014, 6(11):a022616.
22. Welz T, Wellbourne-Wood J, Kerkhoff E: Orchestration of cell surface proteins by Rab11. Trends Cell Biol 2014, 24(7):407-415.
23. Goldenring J R, Soroka C J, Shen K R, Tang L H, Rodriguez W, Vaughan H D, Stoch S A, Modlin I M: Enrichment of rab11, a small GTP-binding protein, in gastric parietal cells. Am J Physiol 1994, 10:513-525.
24. Lai F, Stubbs L, Artzt K: Molecular analysis of mouse Rab11b: A new type of mammalian YPT/Rab protein. Genomics 1994, 22(3):610-616.
25. Goldenring J R, Shen K R, Vaughan H D, Modlin I M: Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lun. J Biol Chem 1993, 268:18419-18422.
26. Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC et al: Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome. Proc Natl Acad Sci U S A 2011, 108(7):2759-2764.
27. Lapierre LA, Dorn MC, Zimmerman CF, Navarre J, Burnette JO, Goldenring JR: Rab11b resides in a vesicular compartment distinct from Rab11a in parietal cells and other epithelial cells. Exp Cell Res 2003, 290(2):322-331.
28. Sugawara K, Shibasaki T, Mizoguchi A, Saito T, Seino S: Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis. Genes Cells 2009, 14(4):445-456.
29. Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC et al: Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 2010, 120(3):840-849.
30. Ullrich O, Reinsch S, Urbe´ S, Zerial M, Parton R: Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996, 135:913-924.
31. Hutagalung AH, Novick PJ: Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 2011, 91(1):119-149.
32. Mizuno-Yamasaki E, Rivera-Molina F, Novick P: GTPase networks in membrane traffic. Annu Rev Biochem 2012, 81:637-659.
33. McDonold CM, Fromme JC: Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network. Dev Cell 2014, 30(6):759-767.
34. Marino Zerial, Heidi McBride: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001, 2:107-117.
35. Ullrich O, Horiuchi H, Bucci C, Zerial M: Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 1994, 368(6467):157-160.
36. Stenmark H VG, Ullrich O, Zerial M,: Rabaptin-5 is a direct effector of the small GTPase rab5 in endocytic membrane fusion. Cell 1995, 83:423-432.
37. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H: EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998, 394(6692):494-498.
38. Huotari J, Helenius A: Endosome maturation. EMBO J 2011, 30(17):3481-3500.
39. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J: Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J Cell Biol 2006, 173(5):767-780.
40. Agola JO, Jim PA, Ward HH, Basuray S, Wandinger-Ness A: Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities. Clin Genet 2011, 80(4):305-318.
41. Martinu L, Santiago-Walker A, Qi H, Chou MM: Endocytosis of epidermal growth factor receptor regulated by Grb2-mediated recruitment of the Rab5 GTPase-activating protein RN-tre. J Biol Chem 2002, 277(52):50996-51002.
42. Domev H, Amit M, Laevsky I, Dar A, Itskovitz-Eldor J: Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells. Tissue Eng Part A 2012, 18(21-22):2290-2302.
43. Yin T, Wang G, He S, Liu Q, Sun J, Wang Y: Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol 2016, 300:41-45.
44. Screaton G R, Bell M V, Bell J I, Jackson D G: The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 1993, 15:12235-12238.
45. Yamano S, Gi M, Tago Y, Doi K, Okada S, Hirayama Y, Tachibana H, Ishii N, Fujioka M, Tatsumi K et al: Role of deltaNp63(pos)CD44v(pos) cells in the development of N-nitroso-tris-chloroethylurea-induced peripheral-type mouse lung squamous cell carcinomas. Cancer Sci 2016, 107(2):123-132.
46. Doerks T, Copley RR, Schultz J, Ponting CP, Bork P: Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 2002, 12(1):47-56.
47. Iczkowski KA: Cell adhesion molecule CD44: its functional roles in prostate cancer. Am J Transl Res 2011, 3(1):1.
48. Senbanjo LT, Chellaiah MA: CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol 2017, 5:18.
49. Banerjee S, Modi S, McGinn O, Zhao X, Dudeja V, Ramakrishnan S, Saluja AK: Impaired synthesis of stromal components in response to minnelide improves vascular function, drug delivery, and survival in pancreatic cancer. Clin Cancer Res 2016, 22(2):415-425.
50. Ponta H, Sherman L, Herrlich PA: CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003, 4(1):33-45.
51. Kang Le C-CL, Guan Ye, Joel Moss, and Martha Vaughan: Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex. Proc Natl Acad Sci U S A 2013, 110:E3162-3170.
52. Jones HD, Moss J, Vaughan M: BIG1 and BIG2, Brefeldin A‐inhibited guanine nucleotide‐exchange factors for ADP‐ribosylation factors. Meth Enzymol 2005, 404:174-184.
53. Choi JY, Shin YC, Yoon JH, Kim CM, Lee JH, Jeon JH, Park HH: Molecular mechanism of constitutively active Rab11A was revealed by crystal structure of Rab11A S20V. FEBS Lett 2016, 590(6):819-827.
54. Shin HW, Morinaga N, Noda M, Nakayama K: BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity. Mol Biol Cell 2004, 15(12):5283-5294.
55. Ramel D, Wang X, Laflamme C, Montell DJ, Emery G: Rab11 regulates cell-cell communication during collective cell movements. Nat Cell Biol 2013, 15(3):317-324.
56. Puxeddu E, Uhart M, Li CC, Ahmad F, Pacheco-Rodriguez G, Manganiello VC, Moss J, Vaughan M: Interaction of phosphodiesterase 3A with brefeldin A-inhibited guanine nucleotide-exchange proteins BIG1 and BIG2 and effect on ARF1 activity. Proc Natl Acad Sci U S A 2009, 106(15):6158-6163.
57. Zhao X, Lasell TK, Melancon P: Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol Biol Cell 2002, 13(1):119-133.
58. Yamaji R, Adamik R, Takeda K, Togawa A, Pacheco-Rodriguez G, Ferrans V, Moss J, Vaughan M: Identification and localization of two brefeldin A-inhibited guanine nucleotide-exchange proteins for ADP-ribosylation factors in a macromolecular complex. Proc Natl Acad Sci USA 2000, 97:119-133.
59. Calhoun B C, Goldenringa J R: Rab proteins in gastric parietal cells: evidence for the membrane recycling hypothesis. Yale J Biol Med 1996, 69(1):1-8.
60. Trischler M, Stoorvogel W, Ullrich O: Biochemical analysis of distinct Rab5- and Rab11-positive endosomes along the transferrin pathway. J Cell Sci 1999, 112:4773-4783.
61. Richardson BC, McDonold CM, Fromme JC: The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev Cell 2012, 22(4):799-810.
62. Emery G, Ramel D: Cell coordination of collective migration by Rab11 and Moesin. Commun Integr Biol 2013, 6(4):e24587.
63. Lopez-Ortega O, Santos-Argumedo L: Myosin 1g contributes to CD44 adhesion protein and lipid rafts recycling and controls CD44 capping and cell migration in B lymphocytes. Front Immunol 2017, 8:1731.
64. Bucci C, Lutcke A, Steele-Mortimer O, Olkkonen VM, Dupree P, Chiariello M, Bruni CB, Simons K, Zerial M: Co-operative regulation of endocytosis by three Rab5 isoforms. FEBS Lett 1995, 366:65-71.
65. Dunn B, Stearns T, Botstein D: SNAREpins: minimal machinery for membrane fusion. Nature 1993, 362:563-565.
66. Stenmark H, Parton RG, Steele‐Mortimer O, Lütcke A, Gruenberg J, Zerial M: Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. The EMBO Journal 1994, 13(6):1287-1296.
67. Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JA, Bennett H, Jones AT: A role for the small GTPase Rab21 in the early endocytic pathway. Journal of cell science 2004, 117(26):6297-6311.
68. Chen W, Feng Y, Chen D, Wandinger-Ness A, Pfeffer SR: Rab11 Is required for trans-golgi network–to–plasma membrane transport and a preferential target for GDP dissociation inhibitor. Mol Biol Cell 1998, 9(11):3241-3257.
69. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42.
70. Fader CM, Sanchez D, Furlan M, Colombo MI: Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 2008, 9(2):230-250.
71. Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA: TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012, 197(5):659-675.
72. de Wit M, de Coo I, Halley D, Lequin M, Mancini G: Movement disorder and neuronal migration disorder due to ARFGEF2 mutation. Neurogenetics 2009, 10(4):333-336.
73. Haeger A, Wolf K, Zegers MM, Friedl P: Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 2015, 25(9):556-566.
74. Vinod V, Padmakrishnan C, Vijayan B, Gopala S: ‘How can I halt thee?’The puzzles involved in autophagic inhibition. Pharmacol Res 2014, 82:1-8.
75. Chen P M, Gombart Z J, W CJ: Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration Cell Biosci 2011, 1:10.
校內:2024-02-28公開